Determination of the Activity and Potential of Chalcone Compounds from Jambu Air Leaves (Eugenia aquea Burm f) Against T47D Breast Cancer Cells In Silico
Keywords:
ADMET, Breast Cancer, Chalcone, Molecular Docking, Jambu Air Leaves
Abstract
Breast cancer is a malignant tumor caused by excessive expression of one or all three estrogen (ER) and progesterone (PR) proteins and Human Epidermal Growth Factor Receptor (HER2). Current breast cancer treatment generally uses chemotherapy, radiotherapy, hormone therapy, and surgery. The increasing need for new drugs with high selectivity, low toxicity, and good metabolic stability against breast cancer has led many researchers to explore Indonesia's natural resources to obtain drugs that have anticancer activity. Chalcone is a secondary metabolite of the flavonoid group with pharmacological activity as an anticancer. Four chalcone compounds in jambu air leaves (Eugenia aquea Burm f) have met the requirement Breast cancer is a malignant tumor caused by excessive expression of one or all three estrogen (ER) and progesterone (PR) proteins and Human Epidermal Growth Factor Receptor (HER2). Current breast cancer treatment generally uses chemotherapy, radiotherapy, hormone therapy, and surgery. The increasing need for new drugs with high selectivity, low toxicity, and good metabolic stability against breast cancer has led many researchers to explore Indonesia's natural resources to obtain drugs that have anticancer activity. Chalcone is a secondary metabolite of the flavonoid group with pharmacological activity as an anticancer. Four chalcone compounds in jambu air leaves (Eugenia aquea Burm f) have met the requirements for drug similarity testing. In silico research is the initial step in designing new drug discoveries because it is relatively faster and can handle thousands of compounds. This study aimed to determine the activity and potential of jambu air (Eugenia aquea Burm f) leaf chalcone compounds in inhibiting the target protein of breast cancer T47D cells in silico and its ADMET prediction. The research method is in silico, with molecular docking techniques using the YASARA View, Marvinsketch, PubChem, PLANTS, and Discovery Studio 2021 applications. The results of the molecular docking analysis of the target protein, namely, Myrigalon-b have the potential to inhibit HER2 protein, Myrigalon-g has the potential to inhibit ERα, and phloretin has the potential to inhibit ERβ. The ADMET prediction results of the Myrigalon-g and phloretin compounds have the best values.References
Almattin, B. N., Lia Aulifa, D., & Aly Al Shofwan, A. (2022). Kalkon dan potensinya sebagai antikanker : literatur review. Jurnal Farmasi Klinik Indonesia, 11(4), 360–375. https://doi.org/10.15416/ijcp.2022.11.4.360
Anggrawati, P. S. & Ramadhania, Z. M. (2018). Review Artikel: Kandungan senyawa kimia dan bioaktivitas dari jambu air (Syzygium aqueum Burn. f. Alston). Farmaka, 14(2), 331–334.
Arifin, I., Sabandar, H. W. P., & Purnomo, H. (2023). Molecular docking senyawa jambu biji (Psidium guajava L.) terhadap reseptor estrogen alfa sebagai model kandidat antikanker payudara. Jurnal Ilmu Farmasi Dan Farmasi Klinik, 1(1), 19-27. https://doi.org/10.31942/jiffk.v0i1.9379
Azzam, K. AL. (2023). SwissADME and pkCSM Webservers predictors: an integrated online platform for accurate and comprehensive predictions for in silico ADMET properties of artemisinin and its derivatives. Complex Use of Mineral Resources, 325(2), 14–21. https://doi.org/10.31643/2023/6445.13
Bustos, L., Echiburú-Chau, C., Castro-Alvarez, A., Bradshaw, B., Simirgiotis, M. J., Mellado, M., Parra, C., & Cuellar, M. (2022). Cytotoxic effects on breast cancer cell lines of chalcones derived from a natural precursor and their molecular docking analysis. Molecules, 27(14), 1–10. https://doi.org/10.3390/molecules27144387
Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Comparing protein-ligand docking programs is difficult. Proteins: Structure, Function and Genetics, 60(3), 325–332. https://doi.org/10.1002/prot.20497
Erhirhie, E. O., Ihekwereme, C. P., & Ilodigwe, E. E. (2018). Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology, 11(1), 5–12. https://doi.org/10.2478/intox-2018-0001
Fauziah, A., Fatharani, A., Nurawaliah, C. M., Rivianto, F. A., Sakina, I. V., Rahmawati, M., & Nurfadhila, L. (2023). Molecular docking senyawa yang berpotensi sebagai antikanker payudara: literature review. Journal of Pharmaceutical and Sciences, 6(2), 416–427. https://doi.org/10.36490/journal-jps.com.v6i2.34
Gote, V., Nookala, A. R., Bolla, P. K., & Pal, D. (2021). Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094673
Johan, A., Atjaya, S. P., & Kurniawan, J. (2024). Sejarah dan Kemajuan dalam Imunoterapi Kanker Memahami Karakteristik Sel Imun yang Menyusup ke Tumor dan Implikasi Terapeutiknya. Journal of Genetic and Optimal Immunology, 1(1), 1–7.
Karim, B. K., Tsamarah, D. F., Zahira, A., Rosandi, N. F., Swarga, K. F., Aulifa, D. L., Elaine, A. A., & Sitinjak, B. D. P. (2023). In-silico study of active compounds in guava leaves (Psidium guajava L.) as candidates for breast anticancer drugs. Indonesian Journal of Biological Pharmacy, 3(3), 194–209.
Korb, O., Stützle, T., & Exner, T. E. (2006). PLANTS: Application of ant colony optimization to structure-based drug design. Lecture Notes in Computer Science, 4150, 247–258. https://doi.org/10.1007/11839088_22
Liambo, I. S., Frisitiohady, A., & Malaka, M. H. (2022). Payudara review: pathophysiology, epidemiology, and cell line of breast cancer. Jurnal Farmasi, Sains, dan Kesehatan, 8(1), 17–22. https://doi.org/10.33772/pharmauho.v8i
Mirza, D.M., Ma’arif, B., Purbosari, I., Hardjono, S., & Agil, M. (2021). Prediksi aktivitas fitoestrogenik senyawa golongan flavonoid terhadap receptor estrogen α (ER-α) dengan pendekatan In Silico. Jurnal Sains Kesehatan , 3(4), 508–515.
Ningrat, A.W.S., (2022). Docking molekuler senyawa brazilein herba Caesalpina Sappanis lignum pada Mycobacterium Tuberculosis inha sebagai antituberkulosis. Inhealth : Indonesian Health Journal, 1(1), 29–34. https://doi.org/10.56314/inhealth.v1i1.19
Pannindriya, P., Safithri, M., & Tarman, K. (2021). Analisis in silico senyawa aktif Sprirulina platensis sebagai inhibitor tirosinase. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(1), 70–77. https://doi.org/10.17844/jphpi.v24i1.33122
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Pratama, M. R. F. (2016). Studi docking molekular senyawa turunan kuinolin terhadap reseptor estrogen-α. Jurnal Surya Medika, 2(1), 1–7. www.rscb.org.
Pratama, M. R. F., Poerwono, H., & Siswandono, S. (2019). Design and molecular docking of novel 5-O-Benzoylpinostrobin derivatives as anti-breast cancer. Thai Journal of Pharmaceutical Sciences, 43(4), 201–212.
Rajagopal, K., Kalusalingam, A., Bharathidasan, A. R., Sivaprakash, A., Shanmugam, K., Sundaramoorthy, M., & Byran, G. (2023). In silico drug design of anti-breast cancer agents. Molecules, 28(10), 1-27. https://doi.org/10.3390/molecules28104175
Riyaldi, M. R., Fatiya, N. U., Dipadharma, R. H. F., Kusnadi, I. F., Hidayat, S., Suhandi, C., & Muchtaridi. (2022). Studi in-silico senyawa pada ekstrak bawang putih (Allium Sativum L.) sebagai inhibitor neuraminidase pada influenza. Farmaka, 20(3), 1–11. http://www.swissadme.ch/index.php
Subeki, & Muhartono. (2015). Senyawa brusein-a dari buah makasar (Brucea javanica (L.) Merr.) sebagai antiproliferasi terhadap sel kanker payudara T47D. Majalah Kedokteran Bandung, 47(1), 22–28. https://doi.org/10.15395/mkb.v47n1.394
Suhud, F., Tjahjono, D. H., Yuniarta, T. A., Putra, G. S., & Setiawan, J. (2019). Molecular docking, drug-likeness, and ADMET study of 1-benzyl-3-benzoylurea and its analogs against VEGFR-2. IOP Conference Series: Earth and Environmental Science, 293(1). https://doi.org/10.1088/1755-1315/293/1/012018
Yeni, Y., & Rachmania, R. A. (2022). The prediction of pharmacokinetic properties of compounds in Hemigraphis alternata (Burm.F.) T. Ander leaves using pkCSM. Indonesian Journal of Chemistry, 22(4), 1081–1089. https://doi.org/10.22146/ijc.73117
Yu, S., Kim, T., Yoo, K. H., & Kang, K. (2017). The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochemical and Biophysical Research Communications, 486(3), 752–758. https://doi.org/10.1016/j.bbrc.2017.03.114
Zhong, H. (2017). ADMET properties: Overview and current topics. In Drug Design: Principles and Applications (Issue June 2017, pp. 113–133). https://doi.org/10.1007/978-981-10-5187-6
Anggrawati, P. S. & Ramadhania, Z. M. (2018). Review Artikel: Kandungan senyawa kimia dan bioaktivitas dari jambu air (Syzygium aqueum Burn. f. Alston). Farmaka, 14(2), 331–334.
Arifin, I., Sabandar, H. W. P., & Purnomo, H. (2023). Molecular docking senyawa jambu biji (Psidium guajava L.) terhadap reseptor estrogen alfa sebagai model kandidat antikanker payudara. Jurnal Ilmu Farmasi Dan Farmasi Klinik, 1(1), 19-27. https://doi.org/10.31942/jiffk.v0i1.9379
Azzam, K. AL. (2023). SwissADME and pkCSM Webservers predictors: an integrated online platform for accurate and comprehensive predictions for in silico ADMET properties of artemisinin and its derivatives. Complex Use of Mineral Resources, 325(2), 14–21. https://doi.org/10.31643/2023/6445.13
Bustos, L., Echiburú-Chau, C., Castro-Alvarez, A., Bradshaw, B., Simirgiotis, M. J., Mellado, M., Parra, C., & Cuellar, M. (2022). Cytotoxic effects on breast cancer cell lines of chalcones derived from a natural precursor and their molecular docking analysis. Molecules, 27(14), 1–10. https://doi.org/10.3390/molecules27144387
Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Comparing protein-ligand docking programs is difficult. Proteins: Structure, Function and Genetics, 60(3), 325–332. https://doi.org/10.1002/prot.20497
Erhirhie, E. O., Ihekwereme, C. P., & Ilodigwe, E. E. (2018). Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology, 11(1), 5–12. https://doi.org/10.2478/intox-2018-0001
Fauziah, A., Fatharani, A., Nurawaliah, C. M., Rivianto, F. A., Sakina, I. V., Rahmawati, M., & Nurfadhila, L. (2023). Molecular docking senyawa yang berpotensi sebagai antikanker payudara: literature review. Journal of Pharmaceutical and Sciences, 6(2), 416–427. https://doi.org/10.36490/journal-jps.com.v6i2.34
Gote, V., Nookala, A. R., Bolla, P. K., & Pal, D. (2021). Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094673
Johan, A., Atjaya, S. P., & Kurniawan, J. (2024). Sejarah dan Kemajuan dalam Imunoterapi Kanker Memahami Karakteristik Sel Imun yang Menyusup ke Tumor dan Implikasi Terapeutiknya. Journal of Genetic and Optimal Immunology, 1(1), 1–7.
Karim, B. K., Tsamarah, D. F., Zahira, A., Rosandi, N. F., Swarga, K. F., Aulifa, D. L., Elaine, A. A., & Sitinjak, B. D. P. (2023). In-silico study of active compounds in guava leaves (Psidium guajava L.) as candidates for breast anticancer drugs. Indonesian Journal of Biological Pharmacy, 3(3), 194–209.
Korb, O., Stützle, T., & Exner, T. E. (2006). PLANTS: Application of ant colony optimization to structure-based drug design. Lecture Notes in Computer Science, 4150, 247–258. https://doi.org/10.1007/11839088_22
Liambo, I. S., Frisitiohady, A., & Malaka, M. H. (2022). Payudara review: pathophysiology, epidemiology, and cell line of breast cancer. Jurnal Farmasi, Sains, dan Kesehatan, 8(1), 17–22. https://doi.org/10.33772/pharmauho.v8i
Mirza, D.M., Ma’arif, B., Purbosari, I., Hardjono, S., & Agil, M. (2021). Prediksi aktivitas fitoestrogenik senyawa golongan flavonoid terhadap receptor estrogen α (ER-α) dengan pendekatan In Silico. Jurnal Sains Kesehatan , 3(4), 508–515.
Ningrat, A.W.S., (2022). Docking molekuler senyawa brazilein herba Caesalpina Sappanis lignum pada Mycobacterium Tuberculosis inha sebagai antituberkulosis. Inhealth : Indonesian Health Journal, 1(1), 29–34. https://doi.org/10.56314/inhealth.v1i1.19
Pannindriya, P., Safithri, M., & Tarman, K. (2021). Analisis in silico senyawa aktif Sprirulina platensis sebagai inhibitor tirosinase. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(1), 70–77. https://doi.org/10.17844/jphpi.v24i1.33122
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Pratama, M. R. F. (2016). Studi docking molekular senyawa turunan kuinolin terhadap reseptor estrogen-α. Jurnal Surya Medika, 2(1), 1–7. www.rscb.org.
Pratama, M. R. F., Poerwono, H., & Siswandono, S. (2019). Design and molecular docking of novel 5-O-Benzoylpinostrobin derivatives as anti-breast cancer. Thai Journal of Pharmaceutical Sciences, 43(4), 201–212.
Rajagopal, K., Kalusalingam, A., Bharathidasan, A. R., Sivaprakash, A., Shanmugam, K., Sundaramoorthy, M., & Byran, G. (2023). In silico drug design of anti-breast cancer agents. Molecules, 28(10), 1-27. https://doi.org/10.3390/molecules28104175
Riyaldi, M. R., Fatiya, N. U., Dipadharma, R. H. F., Kusnadi, I. F., Hidayat, S., Suhandi, C., & Muchtaridi. (2022). Studi in-silico senyawa pada ekstrak bawang putih (Allium Sativum L.) sebagai inhibitor neuraminidase pada influenza. Farmaka, 20(3), 1–11. http://www.swissadme.ch/index.php
Subeki, & Muhartono. (2015). Senyawa brusein-a dari buah makasar (Brucea javanica (L.) Merr.) sebagai antiproliferasi terhadap sel kanker payudara T47D. Majalah Kedokteran Bandung, 47(1), 22–28. https://doi.org/10.15395/mkb.v47n1.394
Suhud, F., Tjahjono, D. H., Yuniarta, T. A., Putra, G. S., & Setiawan, J. (2019). Molecular docking, drug-likeness, and ADMET study of 1-benzyl-3-benzoylurea and its analogs against VEGFR-2. IOP Conference Series: Earth and Environmental Science, 293(1). https://doi.org/10.1088/1755-1315/293/1/012018
Yeni, Y., & Rachmania, R. A. (2022). The prediction of pharmacokinetic properties of compounds in Hemigraphis alternata (Burm.F.) T. Ander leaves using pkCSM. Indonesian Journal of Chemistry, 22(4), 1081–1089. https://doi.org/10.22146/ijc.73117
Yu, S., Kim, T., Yoo, K. H., & Kang, K. (2017). The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochemical and Biophysical Research Communications, 486(3), 752–758. https://doi.org/10.1016/j.bbrc.2017.03.114
Zhong, H. (2017). ADMET properties: Overview and current topics. In Drug Design: Principles and Applications (Issue June 2017, pp. 113–133). https://doi.org/10.1007/978-981-10-5187-6
Published
2025-02-28
How to Cite
Setyaningsih, E., Dari, R., & Manalu, R. (2025). Determination of the Activity and Potential of Chalcone Compounds from Jambu Air Leaves (Eugenia aquea Burm f) Against T47D Breast Cancer Cells In Silico. Sainstech Farma: Jurnal Ilmu Kefarmasian, 18(1), 1-9. https://doi.org/https://doi.org/10.37277/sfj.v18i1.2196
Section
Articles