

Sintesis Nanopartikel Tembaga (Cu) Untuk Pelapisan Pada Kain Katun Dengan Metode Reduksi Kimia dan Karakterisasinya

Musfirah Cahya F.T¹), Romulda Hesti Ano²), Ridwan Syarofie³),

^{1,2)}Fakultas Sains dan Teknologi Informasi, Institut Sains Dan Teknologi Nasional, Jagakarsa, Jakarta Selatan

³⁾Pusat Sains dan Teknologi Bahan Maju (PSTBM) Badan Tenaga Nuklir Nasional (BATAN), Setu, Tangerang Selatan

Email: 1<u>musfirah@istn.ac.id</u>, 2<u>anohesty24@gmail.com</u>

³ridwan@batan.go.id,

Abstrak

Nanopartikel Tembaga telah berhasil disintesis menggunakan metode reduksi kimia berdasarkaan variasi waktu perendaman, sampel I (5,15 menit), sampel II (10,30 menit), dan sampel III (20,60 menit). Penelitian ini bertujuan untuk mengetahui proses pembentukan dan pelapisan nanopartikel tembaga (Cu) pada kain katun menggunakan metode reduksi kimia, untuk mengetahui pengaruh variasi waktu perendaman sampel kain katun pada larutan CuNP_s, dan untuk mengetahui hasil karakterisasi nanopartikel Cu menggunakan XRD *(X-Ray Diffraction)*, FTIR *(Fourier Transformed Infra Red)*, SEM *(Scanning Electron Microscope)*. Material yang digunakan untuk membuat nanopartikel adalah CuSO₄.5H₂O yang dicampurkan dengan C₆H₈O₆ dan kemudian ditambahkan NaBH₄ sebagai reduktor. Larutan yang diperoleh dipanaskan pada suhu 30^o hingga 80^o C. Diperoleh hasil sampel III lebih optimal jika dibandingkan dengan sampel I dan II. Hasil yang diperoleh kemudian dikarakterisasi menggunakan XRD, FTIR, dan SEM. Analisis XRD menunjukan struktur kristal yang terbentuk bersesuaian dengan fasa senyawa Cu dan Cu₂O yang ditandai oleh terbentuknya intensitas difraksi pada sudut 2Theta. Ukuran nanopartikel Cu berkisar 24-54 nm. Hasil FTIR memenunjukan adanya senyawa lain O-H yang merupakan vibrasi dari Cu₂O. Hasil SEM menunjukan morfologi kain katun dengan massa nanopartikel Cu sebesar 7.13%.

Kata Kunci: Nanopartikel Tembaga (Cu), Sintesis Nanopartikel, Struktur Kristal

Abstract

Copper nanoparticles have been successfully synthesized using chemical reduction methods based on variations in immersion time, sample I (5.15 minutes), sample II (10.30 minutes), and sample III (20.60 minutes). This study aims to determine the process of formation and coating of copper (Cu) nanoparticles on cotton cloth using the chemical reduction method, to determine the effect of variations in immersion time of cotton cloth samples in CuNPs solution and to determine the results of the characterization of Cu nanoparticles using XRD (X-Ray Diffraction). FTIR (Fourier Transformed Infra Red), SEM (Scanning Electron Microscope). The material used to make nanoparticles is CuSO₂4.5H₀mixed with C₆H₈O₆ and then NaBH₄ as a reducing agent. The obtained solution was heated at a temperature of 30° to 80° C. The results of sample III were more optimal when compared to samples I and II. The results obtained were then characterized using XRD, FTIR, and SEM. XRD analysis shows that the crystal structure formed corresponds to the phases of Cu and Cu₂O compounds which are characterized by the formation of diffraction intensity at 2Theta angle. The size of Cu nanoparticles ranges from 24-54 nm. FTIR results indicate the presence of other compounds OH which is the vibration of Cu₂O. SEM results show the morphology of cotton fabrics with a mass of Cu nanoparticles of 7.13%.

Keywords: Copper (Cu) Nanoparticles, Nanoparticle Synthesis, Crystal Structure

1. Pendahuluan

Nanoteknologi merupakan kajian ilmu dan rekavasa material dalam skala nanometer yang sedang populer belakangan ini. Nanoteknologi menarik banyak minat para peneliti seluruh dunia baik untuk kebutuhan akademik maupun kebutuhan industri karena pemanfaatan aplikasinya vang luas. Salah satu perkembangan dari nanoteknologi adalah nanopartikel. Nanopartikel merupakan suatu partikel yang berukuran nanometer yaitu berkisar 1-100 nm. Aplikasi nanopartikel telah banyak ditemukan di berbagai bidang seperti kedokteran, elektronik, sel bahan bakar, baterai, sensor kimia, farmasi, industri susu, dan tekstil (Kakakhel et al. 2021).

Di bidang tekstil nanopartikel diaplikasikan untuk meningkatkan sifat fungsional seperti pewarnaan, ketahanan penyusutan, terhadap sebagai perlindungan ultraviolet (UV), anti air, bau dan pengelolaan kelembapan (Chattopadhyay and Patel 2010). Industri tekstil merupakan salah satu industri yang mengimplementasikan nanopartikel pada setiap aspek kebutuhannya. Menurut (Jamdagni et al. 2016) konsep nanoteknologi pada tekstil memberikan solusi antivirus dan bakteri. Beberapa tahun belakangan banyak peneliti yang mengembangkan nanopartikel logam pada serat kain katun karena potensinya untuk digunakan dalam aplikasi seperti perangkat medis, pembalut luka, peralatan perawatan kesehatan dan pakaian pelindung. Serat alam vang biasa digunakan ialah kapas. Kapas merupakan bahan dasar katun yang memiliki biokompabilitas yang baik, tidak ada toksinasi dan aktivitas biologis yang potensial (Sedighi et al. 2014).

Nanopartikel dapat dihasilkan melalui proses alami maupun sintesis. Proses sintesis dapat dilakukan secara fisika dan kimia. Secara fisika nanopartikel dibentuk dengan menggunakan alat untuk memecahkan material berukuran besar menjadi material berukuran kecil dalam skala nano. Secara kimia proses sintesis dilakukan dengan melibatkan reaksi kimia dengan sejumlah material prekursor dan reduktor hingga menghasilkan material berukuran nano. Beberapa metode secara kimia yang dapat digunakan untuk sintesis nanopartikel yaitu metode penguapan fase gas, plasma, deposisi uap vakum, radiasi hidrotermal, kimia-mekanik, ultrasionik, iradiasi berkas elektron, dekomposisi fotokatalik, elektrolisis, sol-gel, mikroemulsi dan reduksi kimia (Sedighi, Montazer, and Hemmatinejad 2014).

Pemanfaatan nanopartikel logam saat ini mengalami perkembangan yang sangat pesat, diantaranya dibidang katalisis, optik dan elektronik. Logam yang banyak diteliti atau dikembangkan menjadi nanopartikel salah satunya adalah tembaga. Tembaga (Cu) menarik banyak minat peneliti karena sifat fisik dan kimianva. Nanopartikel tembaga (Cu) diketahui mampu menghambat prokreasi sel Hela (sel kanker serviks). Menurut (Radha and Kalyanaraman 2019) nanopartikel tembaga (Cu) telah menunjukan efek sitotoksik pada sel Hela. Nanopartikel tembaga (Cu) mempunyai sifat antibakteri yang baik dalam jangka waktu yang lama.

Produksi nanopartikel tembaga terbilang cukup mudah karena terdapat banvak metode vang dapat menghasilkannya salah satunya adalah reduksi kimia. Metode reduksi kimia merupakan metode yang umum digunakan dengan alasan faktor kemudahan, biaya yang relatif murah serta kemungkinannya untuk diproduksi dalam skala besar. Pada metode reduksi kimia pertumbuhan dan agregasi bakteri dapat dikendalikan dengan mengatur parameter reaksi seperti suhu, pH, zat pereduksi, dan Montazer, pelarut (Sedighi, and Hemmatinejad 2014). Material tembaga yang dapat disintesis dalam ukuran nano adalah Tembaga sulfat (CuSO₄.5H₂O). Material ini telah banyak digunakan untuk produksi nanopartikel Cu dan telah menunjukan potensi yang besar untuk aplikasinya dibidang tekstil.

2. Metodologi Penelitian

Bahan yang digunakan adalah tembaga sulfat pentahidrat ($CuSO_{4.}SH_2O$) 0.01 M, asam askorbat $C_6H_8O_6$ 0.024 M, natrium borohidrat ($NaBH_4$) 0.01 M, kain katun, DI Water, detergen nonionik, gas Argon. Alat yang digunakan adalah neraca analitik, *magnetic stirrer*, oven, beaker gelas, gelas ukur, spatula, Erlenmeyer, batang

pengaduk, pH meter, cawan petri, termometer, pinset, sumpit, pipet tetes dan penjepit kertas. Karakterisasi dilakukan menggunakan instrument XRD *(X-Ray Diffraction)* tipe PANalytical Empyrean, FTIR *(Fourier Transformed Infra Red)* type Tensor27 ATR Crystal Ge, dan SEM *(Scanning Electron Microscope)* type Jeol JSM-6510LA with system revolution analysis Accelleration Voltage: 20 kV.

nanopartikel Sintesis tembaga dilakukan menggunakan metode reduksi kimia. Larutan CuSO₄.5H₂O 0.01 M dan C₆H₈O₆ 0.024 M dicampur dalam beaker gelas lalu distirer selama 10 menit. Kemudian larutan NaBH₄ 0.01 Μ ditambahkan kedalam larutan campuran dan distirrer selama 15 menit. Warna larutan berubah dari semula berwarna biru muda menjadi kuning kecokelatan hingga menjadi warna hitam pekat.

Proses impregnasi dilakukan dengan merendam kain katun dalam larutan sintesis nanopartikel Cu.

- 1. Sampel I direndam pada larutan nanopartikel Cu selama 5 menit pada suhu 30° C. Lalu pada saat suhu larutan dinaikan menjadi 80° C sampel direndam selama 15 menit sambil distirrer.
- Sampel II direndam pada larutan nanopartikel Cu selama 10 menit pada suhu 30° C. Lalu pada saat suhu larutan dinaikan menjadi 80° C sampel direndam selama 30 menit sambil distirrer.
- Sampel III direndam pada larutan nanopartikel Cu selama 20 menit pada suhu 30° C. Lalu pada saat suhu larutan dinaikan menjadi 80° C sampel direndam selama 60 menit sambil distirrer.

3. Hasil Dan Pembahasan

Tampilan sampel kain katun setelah diimpregnasi larutan nanopartikel Cu dapat dilihat pada Gambar 1 berikut

Gambar 1 Tampilan sampel I, II, dan III

Gambar 1 diatas memperlihatkan adanya perbedaan warna tiap sampel dimana warna sampel III lebih gelap jika dibandingkan dengan sampel I dan II. Hal ini menunjukan bahwa sampel III dengan variasi waktu prendaman sampel 20 menit pada suhu 30[°] C dan 60 menit pada suhu 80[°] C lebih optimal dari sampel I dan II.

Pengujian Sampel

Hasil dan Analisi XRD (X-ray difraction)

Karakterisasi pola difraksi sinar-X sampel dilakukan dengan menggunakan alat uji *Xray difraction* tipe Empirean dengan sumber sinar-X dari tembaga pada sudut $2\theta = 29^{\circ}-108^{\circ}$ dan panjang gelombang yang dihasilkan sebesar $\lambda = 1,54060$ Å. Hasil pola difraksi sinar-X digunakan untuk mengidentifikasi ukuran dan struktur kristal yang terbentuk pada Gambar 2 berikut.

Hasil pola difraksi yang terbentuk pada gambar diatas menunjukan struktur kristal yang bersesuaian dengan fasa

material Cu dan Cu₂O yang ditandai oleh terbentuknya puncak-puncak intensitas difraksi pada sudut 2theta seperti pada Tabel 1 berikut.

Tabel 1 Struktur kristal Cu dan Cu2Oterhadap 2theta

	Cu			Cu ₂ O	
Intensitas	2theta	FWHM	Intensitas	2theta	FWHM
%				%	
86.88	43.35	0.475(6)	4.66	29.64	0.32(3)
43.44	43.46	0.475(6)	2.33	29.72	0.32(3)
23.31	50.45	0.69(1)	100	36.49	0.316(4)
11.66	50.59	0.69(1)	50	36.59	0.316(4)
13.54	74.15	0.69(5)	36.42	42.38	0.31(1)
6.77	74.37	0.69(5)	18.21	42.49	0.31(1)
4.39	77.43	0.4(1)	27.27	61.46	0.31(1)
2.19	77.66	0.4(1)	13.63	61.63	0.31(1)
13.42	89.93	0.69(2)	18.74	73.59	034(2)
6.71	90.21	0.69(2)	9.73	73.81	0.34(2)

Data difraksi yang diperoleh pada Tabel 1 menunjukan adanya nanopartikel selain Cu yaitu Cu₂O yang ditandai oleh puncakpuncak vang terbentuk. Nanopartikel Cu terbentuk pada puncak (43.35), (43.46), (50.45), (50.59), (74.15), (74.37), (77.43), (77.66), (89.93) (Sedighi, Montazer, and Hemmatinejad 2014), (AGUILAR, ESPARZA, and ROSAS 2019). Nanopartikel Cu₂O terbentuk pada puncak (29.64), (29.72), (36.49), (36.59), (42.38), (42.49), (61.46), (61.63), (73.59), (73.81) (Kooti and Matouri 2010), (Ozay et al. 2016), (Mo et al. 2018). Nanopartikel Cu₂O terbentuk disebabkan oleh adanya oksidasi Cu dan O pada larutan yang dipengaruhi oleh komposisi kimia dan suhu perlakuan. Pengindeksan *d-spasing* yang terbentuk terhadap metode perendaman sangat mempengaruhi theta.

Tabel 2 Struktur kristal Cu dan Cu2Oterhadap dspasing

Cu			Cu_2O			
Intensitas (%)	dspasing	FWHM (°)	Intensitas (%)	dspasi-ng	FWHM (°)	
86.88	2.08547	0.475(6)	4.66	3.01114	0.32(3)	
43.44	2.08547	0.475(6)	2.33	3.01114	0.32(3)	

23.31	1.80726	0.69(1)	100	2.45979	0.316(4)
11.66	1.80726	0.69(1)	50	2.45979	0.316(4)
13.54	1.27767	0.69(5)	36.42	2.13073	0.31(1)
6.77	1.27767	0.69(5)	18.21	2.13073	0.31(1)
4.39	1.23156	0.4(1)	27.27	1.50744	0.31(1)
2.19	1.23156	0.4(1)	13.63	1.50744	0.31(1)
13.42	1.09000	0.69(2)	18.74	1.28596	034(2)
6.71	1.09000	0.69(2)	9.73	1.28596	0.34(2)

Berdasarkan data PDF (Powder Difraction (crystallography *File*)-COD *Open* Database) Cu memiliki struktur Face Center Cubic dan Cu₂O memiliki struktur simple cubic vang ditandai oleh indeks miller yang terbentuk yang ditunjukan pada Tabel 3 berikut. Struktur kristal Cu memiliki indek miller [200], [211], [311], [222], dan [400] sedangkan Cu₂O memiliki indeks miller [110], [111], [220] dan [311] (Suryanarayana and Norton 1998). FWHM (full width at half maximum) merupakan lebar sudut penuh pada setengah maksimum pada puncak difraksi sinar-X. FWHM dihitung menggunakan software HighScore Plus ver: 3.0e.

Tabel 3 Struktur kristal Cu dan Cu₂O terhadap indeks miller

	Cu		Cu ₂ O		
Intensita	s [hkl]	FWHM	Intensitas	[hkl]	FWHM
(%)		(*)	(%)		(°)
86.88	(200)	0.475(6)	4.66	(110)	0.32(3)
43.44	(200)	0.475(6)	2.33	(110)	0.32(3)
23.31	(211)	0.69(1)	100	(111)	0.316(4)
11.66	(211)	0.69(1)	50	(111)	0.316(4)
13.54	(311)	0.69(5)	36.42	(200)	0.31(1)
6.77	(311)	0.69(5)	18.21	(200)	0.31(1)
4.39	(222)	0.4(1)	27.27	(220)	0.31(1)
2.19	(222)	0.4(1)	13.63	(220)	0.31(1)
13.42	(400)	0.69(2)	18.74	(311)	034(2)
6.71	(400)	0.69(2)	9.73	(311)	034(2)

Dengan mengetahui indeks miller pada nanaopartikel, sistem kristal akan diketahui dengan mencari parameter kisi dan sudut. Cu memiliki struktur kristal FCC *(Face Center Cubic)* yang

menyebabkan sistem kristal yang terbentuk yaitu cubic dan Cu₂O dengan struktur skristal SC *(simple cubic)* yang terbentuk ialah cubic (Tabel 4 dan 5).

Tabel 4 Struktur kristal Cu dan Cu_2O terhadap sistem krista

Cu			Cu ₂ O			
Dspasing (Å)	[hkl]	Sistem Kristal	Dsapsing (Å)	[hkl]	Sistem Kristal	
2.08547	(200)	Cubic	3.01114	(110)	Cubic	
2.08547	(200)	Cubic	3.01114	(110)	Cubic	
1.80726	(211)	Cubic	2.45979	(111)	Cubic	
1.80726	(211)	Cubic	2.45979	(111)	Cubic	
1.27767	(311)	Cubic	2.13073	(200)	Cubic	
1.27767	(311)	Cubic	2.13073	(200)	Cubic	
1.23156	(222)	Cubic	1.50744	(220)	Cubic	
1.23156	(222)	Cubic	1.50744	(220)	Cubic	
1.09000	(400)	Cubic	1.28596	(311)	Cubic	
1.09000	(400)	Cubic	1.28596	(311)	Cubic	

Tabel 5Struktur kristal terhadapparameter kisi

		Cu ₂ O	
Cu			
konstanta Kisi	Sistem	konstanta Kisi	Sistem
α (nm)	Kristal	α (nm)	Kristal
α = 0,417	Cubic	α = 0,4258	Cubic
α = 0,417	Cubic	α = 0,4258	Cubic
α= 0,4426	Cubic	α = 0,4259	Cubic
α= 0,4426	Cubic	α = 0,4259	Cubic
α= 0,4235	Cubic	α = 0,4206	Cubic
α= 0,4235	Cubic	α = 0,4206	Cubic
α= 0,4264	Cubic	α = 0,4262	Cubic
α= 0,4264	Cubic	α = 0,4262	Cubic
α = 0,436	Cubic	α= 0,4261	Cubic
α = 0,436	Cubic	α= 0,4261	Cubic

Ukuran nanopartikel Cu yang diperoleh menggunakan persamaan Debye Schrerre berkisar 25-53 nm, sedangkan ukuran Cu₂O di kisaran 49-59. Dengan rata-rata ukuran nanopartikel Cu 35 nm dan rata-rata Cu_2O sebesar 55 nm. Ukuran

nanopartikel Cu lebih kecil jika dibandingankan dengan ukuran Cu₂O. Seperti pada Tabel 6 berikut.

Tabel 6 Ukuran Nanopartikel

Cu			Cu ₂ O			
2 0	FWHM	Ukuran	2 0	FWHM	Ukuran	
(º)	(radiant) ⁿ	anopartikel (nm)	(º)	(radiant)	nanopartikel (nm)	
43,35	0,475(6)	36	29,64	0,32(3)	49	
43,46	0,475(6)	36	29,72	0,32(3)	51	
50,45	0,69(1)	25	36,49	0,316(4)	52	
50,59	0,69(1)	25	36,59	0,316(4)	52	
74,15	0,69(5)	28	42,38	0,31(1)	54	
74,37	0,69(5)	29	42,49	0,31(1)	54	
77,43	0,4(1)	52	61,46	0,31(1)	59	
77,66	0,4(1)	53	61,63	0,31(1)	59	
89,93	0,69(2)	32	73,59	0,34(2)	59	
90.21	0,69(2)	32	73,81	0,34(2)	59	

Hasil dan Analisis FTIR (*Fourier Transformed Infra Red*)

Untuk menentukan ikatan senyawa yang terbentuk pada sampel nanopartikel Cu dilakukan analisis FTIR berdasarkan intensitas cahaya infrared yang diserap oleh sampel. Hasil spektrum FTIR diukur menggunakan FTIR type Tensor27 ATR Cystal Ge dari bilangan gelombang 500 hingga 4000 cm⁻¹. Hasil FTIR nanopartikel Cu berdasarkan variasi waktu ditunjukkan pada Gambar dan Tabel 7 dibawah ini

Hasil FTIR nanopartikel Cu

Tabel 7 hasil karakterisasi FTIR

Adsorbsi	Bilangan	Ikatan senyawa			
(%)	gelombang				
	cm				
91	729.7288	=C-H out of plane bending			
		Secondary amide N-H			
		wagging			
		C–X stretching			
		P=S stretching			
92	1250.6183	=C-H in plane bending			
		C-O Stretching			
02	1721 2607	Aliphatic C-O stretching			
93	1/21.209/	band			
		Aliphatic aldebyde $C=0$			
		stretching			
		First overtone C-H			
		stretching			
94	1099.9040	=C-H in plane bending			
		C-O Stretching			
		Aliphatic C-N stretching			
95	1126.3451	=C-H in plane bending			
		C-O Stretching			
		Aliphatic C-O stretching			
		Aliphatic C-N stretching			
		C-F stretching			
		Second overtone C-H			
97	1023 2240	=C-H in plane bending			
71	1025.2247	C-O Stretching			
		Aliphatic C-N stretching			
		S=O stretching			
97	1340.5180	Aromatic C-N stretching			
		B–N stretching			
		B–O stretching			
		SO ₂ asymmetric stretching			
97	877.7989	=C-H out of plane bending			
		Third overtone C-H			
00	(24 5400	stretching			
98	634.5409	=C-H out of plane bending			
		C-S stretching			
98	1409 2648	= $C-H$ in plane bending			
70	1109.2010	Azo compound N=N			
		stretching			
		B-N stretching			
		First overtone N-H			
		stretching			

Unsur bahan yang digunakan pada penelitian ini adalah sebagai berikut: Cu, S, O, H, C, Na, B, H. Hasil spektrum pada tabel menunjukan adanya ikatan Cu yang ditandai oleh munculnya daerah serapan yang menginditifikasikan adanya C-H stretching yaitu pada bilangan gelombang 729.7288, 877.7989, 634.5409. Selain Cu, spektrum FTIR juga menunjukan adanya senyawa lain yang muncul yaitu stretching metal oxide dan metal carbonyl pada bilangan gelombang 1250.7388, 1721.2697, 1099.9040, 1126.3451, 1023.2249, 1340.5180.

Hasil dan Analisis SEM *(Scanning Elektron Mikroskop)*

Analisis morfologi yang meliputi struktur, bentuk dan ukuran material

diukur dengan *Scanning Elektron Mikroskop merck Jeol* JSM-6510LA dengan *system revolution analysis Accelleration voltage: 20 kV.* Sampel kain katun dipotong dengan ukuran yang sesuai dengan alat karakterisasi (Gambar 4-6).

Gambar 4 hasil morfologi SEM pada pembesaran 60

Gambar 5 hasil morfologi SEM pada pembesaran 150

Gambar 6 hasil morfologi SEM pada pembesaran 1000

Morfologi sampel kain vang diimpregnasi oleh nanopartikel Cu pada gambar yang diambil pada pembesaran 60, 150, dan 1000 dengan memperlihatkan nanopartikel vang ditandai adanya gumpalan putih pada serat kain. Ukuran nanopartikel telah diketahui melalui data xrd yang dihitung dengan kisaran 24-54 nm. Berdasarkan ukuran nanopartikelnya, dapat dikatakan sebaran nanopartikel Cu pada sampel kain sudah merata dan memiliki ukuran yang halus atau kecil. Untuk mengetahui distribusi komposisi penyusun dari Cu maka dilakukan pengujian EDX (Energy *Dispersive X-Ray Spectrometry*) pada area seluruh permukaan sampel kain katun. Seperti pada gambar 7 dibawah ini.

Hasil EDX keseluruhan potongan sampel kain katun

Tabel 8AnalisishasilEDXkeseluruhanpotongan sampel kain katun

Element	keV	Massa (%)	Eror (%)	Atom (%)	wt %	К
C k	0.277	62.74	0.04	72.41	62.7	64.2015
O k	0.525	30.02	0.33	26.01	30	23.7189
Cu k	8.040	7.23	0.61	1.58	7.24	12.0796
Total		100.00		100.00		

Pada Tabel 8 menunjukan bahwa nanopartikel Cu yang disintesis oleh bahan CuSO₄.5H₂O, C₆H₈O₆, dan NaBH₄ mengandung atom Cu sebanyak 7.23%, hal ini menunjukan adanya unsur lain seperti C dan O yang memiliki distribusi komposisi yang lebih tinggi dibandingkan dengan Cu. Hasil EDX yang diperoleh sesuai dengan hasil XRD yaitu munculnya senyawa lain yaitu Cu₂O.

4. Kesimpulan

Nanopartikel Cu telah berhasil disintesis menggunakan metode Reduksi kimia. Analisis XRD menunjukan bahwa fasa kristalin yang terbentuk adalah nanopartikel Cu vang ditandai oleh puncak intensitas difraksi pada 2Theta (43.35), (43.46), (50.45), (50.59), (74.15), (74.37), (77.43), (77.66), (89.93). Ukuran nanopartikel yang terbentuk berkisar 24-54 nm. Terdapat senyawa lain yang terbentuk vaitu Cu₂O, hal ini juga dibuktikan oleh analisis FTIR yang menunjukan adanya vibrasi pada puncak daerah serapan pada bilangan gelombang (1250.6183), (1099.9040), (1126.3451), (1023.2249), (1721.2697), (1340.5180), vang menunjukan stretching metal oxide dan *metal carbonil* dari Cu₂O. Variasi waktu perendaman memberikan pengaruh terhadap nanopartikel yang terbentuk. Sampel III memberikan Hasil optimal vaitu pada waktu vang perendaman 20 menit pada suhu 30^oC dan pada suhu 80°C 60 menit iika dibandingkan dengan sampel I pada waktu perendaman (5,15 menit) dan sampel II pada waktu perendaman (10,30 menit). Ukuran nanopartikel yang terbentuk berukuran 25-53. Terdapat pengaruh suhu pemanasan larutan terhadap proses impregnasi nanopartikel Cu pada kain katun yang menyebabkan ternyadinya oksidasi hingga terbentuknya senyawa Cu₂O.

Pada proses impregnasi nanopartikel Cu terhadap kain katun, suhu larutan harus dinaikan hingga mencapai titik didih dari tembaga. Dibutuhkan perlakukan khusus agar nanopartikel Cu tidak teroksidasi dengan oksigen sehingga menghasilkan nanopartikel Cu murni.

Daftar Pustaka

- Aguilar, M. S., R. Esparza, and G. Rosas. 2019. "Synthesis of Cu Nanoparticles by Chemical Reduction Method." *Transactions of Nonferrous Metals Society of China (English Edition)* 29(7): 1510–15. http://dx.doi.org/10.1016/S1003-6326(19)65058-2.
- Chattopadhyay, D. P., and B. H. Patel. 2010. "Effect of Nanosized Colloidal Copper on Cotton Fabric." *Journal of*

Engineered Fibers and Fabrics 5(3): 1–6.

- Jamdagni, Pragati, Poonam Khatri, and J. S. Rana. 2016. "Nanoparticles Based DNA Conjugates for Detection of Pathogenic Microorganisms." *International Nano Letters* 6(3): 139–46.
- Kakakhel, Mian Adnan et al. 2021. "Green Synthesis of Silver Nanoparticles and Their Shortcomings, Animal Blood a Potential Source for Silver Nanoparticles: A Review." *Journal of Hazardous Materials Advances* 1(August): 100005. https://doi.org/10.1016/j.hazadv.20 21.100005.
- Kooti, M., and L. Matouri. 2010. "Fabrication of Nanosized Cuprous Oxide Using Fehling's Solution." *Scientia Iranica* 17(1 F): 73–78.
- Radha, K, and Gayathri Kalyanaraman. 2019. "Synthesis, Characterization and Application OfCopper Nano-Particles: A Review." *International journal of engineering research and technology* 8(03): 412–21.
- Sedighi, Ali, Majid Montazer, and Nahid Hemmatinejad. 2014. "Copper Nanoparticles on Bleached Cotton Fabric: In Situ Synthesis and Characterization." *Cellulose* 21(3): 2119–32.
- **Mo, Xi et al. 2018.** "Surface Modification of Micro-Sized CuO by in Situ-Growing Heterojunctions CuO/Cu2O and CuO/Cu2O/Cu: Effect on Surface Charges and Photogenerated Carrier Lifetime." *Applied Physics A: Materials Science and Processing* 124(10): 2–9.
- **Ozay, Yasin et al. 2016.** "Investigation of Electroactive and Antibacterial Properties of Polyethersulfone Membranes Blended With Copper Nanoparticles." *Clean - Soil, Air, Water* 44(8): 930–3