# ANALISIS PERCEPATAN WAKTU PELAKSANAAN PEKERJAAN PADA PROYEK PEMBANGUNAN JALAN TOL MENGGUNAKAN METODE TIME COST TRADE OFF

(Studi Kasus: Proyek Jalan Tol Cinere – Jagorawi Seksi 3)

Ismono Kusmaryono<sup>1</sup>, Novika Candra Fertilia<sup>2</sup>,Rafama Dewi<sup>3</sup>, Fajar Mahardika<sup>4</sup>

1,3,4</sup>Program Studi Teknik Sipil

Institut Sains dan Teknologi Nasional

Jln. Moch. Kahfi II, Bhumi Srengseng Indah P.O. Box 7715 JKS LA

Kelurahan Jagakarsa – Jakarta Selatan 12620, Telp. 78880275

<sup>2</sup>Program Studi Teknik Sipil

Universitas Mercu Buana

Jl. Meruya Selatan No.1 Kembangan Jakarta Barat 11650

Email: ikusmaryono@istn.ac.id<sup>1</sup>, novikacandraf@yahoo.com<sup>2</sup>, rafama@istn.ac.id<sup>3</sup>, fajarmhrdk19@gmail.com<sup>4</sup>

#### Abstrak

Bagi kontraktor mengontrol sebuah proyek secara sistematis adalah hal penting agar waktu penyelesaian proyek dapat sesuai dengan kontrak atau bahkan dapat dipercepat sehingga menghasilkan keuntungan atau *benefit* serta dapat terhindar dari denda akibat keterlambatan penyelesaian proyek. Proyek Pembangunan Jalan Tol Cinere – Jagorawi Seksi 3 memiliki durasi awal selama 485 hari. Tujuan dari penelitian ini adalah untuk mencari aktivitas – aktivitas pada lintasan kritis dan menghitung total biaya dan durasi akibat proses percepatan pada pekerjaan Jalan Utama/*Main Road* yang memiliki biaya sebesar Rp. 48.786.897.253,58 dan durasi normal 400 hari. Metode yang digunakan adalah *Time Cost Trade Off*. Hasil penelitian menghasilkan 16 aktivitas lintasan kritis yaitu untuk Seksi 3-A adalah Pekerjaan *Compacted Subgrade*, Pekerjaan *Drainage Layer*, Pekerjaan *Lean Concrete*, Pekerjaan Urugan Pasir, Pembesian, Pemasangan Bekisting, Pengecoran, dan *Guard Rail*. Untuk Seksi 3-B adalah Pekerjaan *Compacted Subgrade*, Pekerjaan *Drainage Layer*, Pekerjaan *Lean Concrete*, Pekerjaan Urugan Pasir, Pembesian, Pemasangan Bekisting, Pengecoran, dan *Guard Rail*. Lalu setelah dilakukan percepatan menjadi 381 hari terjadi penghematan biaya sebesar Rp. 32.201.092,44, 375 hari terjadi penambahan biaya sebesar Rp. 188.543.069,50, 365 hari terjadi penambahan biaya sebesar Rp. 297.287.278,72, dan pada percepatan 354 hari terjadi penambahan biaya sebesar Rp. 412.763.518,87.

Kata Kunci : *Time Cost Trade Off*, Percepatan Proyek, Penambahan Tenaga Kerja, Penambahan Jam Lembur, Durasi Optimal.

## Abstract

For contractors to control a project systematically is important so that the project completion time can be in accordance with the contract or can even be accelerated so as to generate profits or benefits and can avoid fines due to delays in project completion. The Cinere – Jagorawi Toll Road Construction Project Section 3 has an initial duration of 485 days. The purpose of this study is to find activities on the critical path and calculate the total cost and duration due to the acceleration process on the Main Road work which has a cost of Rp. 48,786,897,253.58 and the normal duration is 400 days. The method used is the Time Cost Trade Off. The results of the study resulted in 16 critical path activities, namely for Section 3-A, namely Compacted Subgrade Works, Drainage Layer Works, Lean Concrete Works, Sand Backfill Works, Ironing, Formwork Installation, Casting, and Guard Rail. For Section 3-B are Compacted Subgrade Works, Drainage Layer Works, Lean Concrete Works, Sand Backfill Works, Iron, Formwork Installation, Casting, and Guard Rail. Then after being accelerated to 381 days there was a cost savings of Rp. 32,201,092,44, 375 days an additional cost of Rp. 188,543,069.50, 365 days there was an additional cost of Rp, 297.287,278.72, and at the acceleration of 354 days there was an additional cost of Rp. 412,763,518.87.

Keywords: Time Cost Trade Off, Project Acceleration, Addition of Manpower, Additional Hours of Overtime, Optimal Duration.

#### **PENDAHULUAN**

Menurut (BPJT, 2022), jalan tol adalah salah satu infrastruktur yang dapat dikategorikan memiliki peranan penting dan signifikan dalam perkembangan suatu daerah, selain itu jalan tol juga diharapkan akan menjadi penunjang dalam peningkatan pertumbuhan perekonomian serta untuk mewujudkan pemerataan pembangunan dalam suatu wilayah. Salah satunya adalah proyek jalan tol Cinere – Jagorawi Seksi 3 (STA 09+314 - STA 15+000). Proyek ini diharapkan dapat mengurai kemacetan di

kota Depok dan meningkatkan volume distribusi barang serta jasa di kawasan Jakarta – Bogor – Depok – Tangerang – Bekasi (Jabodetabek).

Pada proses pelaksanaan sebuah proyek konstruksi sering terjadi adanya ketidaksesuaian antara jadwal rencana dengan realisasinya di lapangan, hal tersebut menjadi faktor yang mengakibatkan bertambahnya waktu dan biaya pelaksanaan. Sebuah keterlambatan dapat diatasi dengan cara melakukan perhitungan struktur yang tepat, estimasi biaya yang efektif dan ekonomis (Rencana Anggaran Biaya), dan manajerial pelaksanaan yang baik terhadap waktu dan biaya agar tercapainya target rencana. Jika salah satu dari upaya tersebut kurang memenuhi maka akan berakibat kurangnya mutu dari proyek tersebut (Yohanes, dkk, 2020).

Pada proyek yang akan dilakukan penelitian terdapat faktor yang mengharuskan adanya sebuah proses percepatan, salah satunya adalah faktor yang sangat kuat yang disebabkan oleh permintaan dari Presiden untuk segera menyelesaikan proyek jalan tol agar segera bisa beroperasi untuk menunjang pertumbuhan ekonomi di daerah Jabodetabek. Dari rencana kontrak awal pembangunan selama 16 bulan diminta oleh Presiden untuk menyelesaikannya dalam waktu 12 bulan.

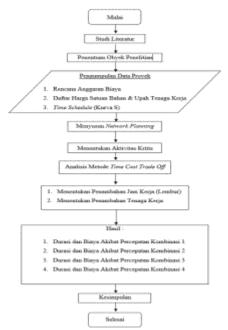
Salah satu cara yang dapat dilakukan adalah dengan melakukan percepatan dengan metode *Time Cost Trade Off.* Metode ini memungkinkan untuk melakukan pertukaran waktu terhadap biaya dengan cara menganalisis penambahan biaya proyek yang akan terjadi akibat dari proses pengurangan durasi pekerjaan, sehingga pada kondisi – kondisi tertentu proyek akan mencapai kondisi waktu dan biaya optimum (Zulkasa, dkk, 2018).

Tujuan dari penelitian ini adalah:

- 1. Menentukan aktivitas aktivitas yang berada pada lintasan kritis.
- 2. Menghitung total durasi dan biaya setelah dilakukan percepatan.

## **METODOLOGI PENELITIAN**

## Lokasi Penelitian Proyek Jalan Tol Cinere – Jagorawi Seksi 3


Proyek jalan tol ini juga termasuk ke dalam Perpres Proyek Strategis Nasional (PSN) Nomor 109 Tahun 2020. Ruas jalan tol ini adalah bagian dari Jalan  $Outer\,Ring\,Road\,(JORR)$  II yang akan menghubungkan daerah Kukusan – Cinere sepanjang  $\pm 5,44$  km yang berlokasi di Kelurahan Krukut, Kecamatan Limo, Kota Depok, Provinsi Jawa Barat.



Gambar 1 Lokasi Proyek

#### Metode Pengumpulan Data

Perencanaan ini tentunya membutuhkan data-data. Data tersebut adalah data sekunder, untuk rinciannya adalah sebagai berikut :



Gambar 2 Diagram Alir Penelitian

## **Data Sekunder**

Pengumpulan data atau informasi dari suatu pelaksanaan proyek konstruksi yang sangat bermanfaat untuk melakukan evaluasi optimasi waktu dan biaya secara menyeluruh. Data yang diperlukan adalah data sekunder yaitu data yang diperoleh dari instansi yang terkait seperti kontraktor, konsultan pengawas, dan lain-lain. Variabel-variabel yang sangat mempengaruhi dalam pengoptimasian waktu dan biaya pelaksanaan proyek ini adalah:

- 1. Variabel Waktu
  - a. Data Kurva-S
  - b. Durasi Normal
- 2. Variabel Biaya
  - a. RAB
  - b. Biaya Normal
  - c. Daftar Harga Bahan dan Upah
- 3. Literatur
  - a. Referensi
  - b. Jurnal
  - c. Perpustakaan
- 4. Wawancara
  - a. Pihak Owner
  - b. Pihak Konsultan Pengawas
  - c. Pihak Kontraktor Pelaksana

## Pengolahan Data

Pengolahan data dilakukan dengan cara menggunakan bantuan *Microsoft Excel* dengan memasukkan data terkait untuk dianalisis menggunakan *Network Planning* yang nantinya akan diketahui aktivitas-aktivitas lintasan kritis. Lalu setelah diketahui apa saja aktivitas-aktivitas lintasan kritis maka dapat dilakukan analisis dengan metode *Time Cost Trade Off* dengan 4 (empat) kombinasi, yaitu:

- 1. Kombinasi 1 = Penambahan 20% Tenaga Kerja + 1 Jam Kerja Lembur
- 2. Kombinasi 2 = Penambahan 20% Tenaga Kerja + 2 Jam Kerja Lembur
- 3. Kombinasi 3 = Penambahan 20% Tenaga Kerja + 3 Jam Kerja Lembur
- 4. Kombinasi 4 = Penambahan 20% Tenaga Kerja + 4 Jam Kerja Lembur

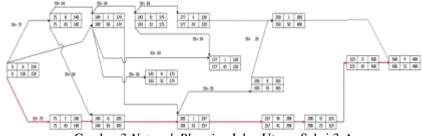
## HASIL DAN PEMBAHASAN

# Data Durasi Normal Pekerjaan Jalan Utama/Main Road

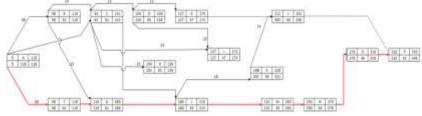
Durasi dari setiap pekerjaan Jalan Utama/Main Road dapat dilihat pada Tabel 1 di bawah ini

Tabel 1 Durasi Normal Setiap Pekerjaan

| No | Item Pekerjaan                   | Durasi<br>(Hari) | No | Item Pekerjaan                   | Durasi<br>(Hari) |
|----|----------------------------------|------------------|----|----------------------------------|------------------|
|    | Seksi 3-A                        |                  |    | SEKSI 3-B                        |                  |
| I  | JALAN UTAMA STA 15+000 s/d       |                  | I  | JALAN UTAMA STA 11+500           |                  |
|    | STA 11+500                       |                  |    | s/d STA 9+314                    |                  |
|    | Jalur A                          |                  |    | Jalur A                          |                  |
| 1  | Pek. Compacted Subgrade          | 118              | 1  | Pek. Compacted Subgrade          | 118              |
| 2  | Pek. Drainage Layer t = 15 cm    | 65               | 2  | Pek. Drainage Layer t = 15 cm    | 61               |
| 3  | Pek. Lean Concrete t = 10 cm     | 65               | 3  | Pek. Lean Concrete t = 10 cm     | 61               |
| 4  | Pemasangan Strecht Plastic Sheet | 32               | 4  | Pemasangan Strecht Plastic Sheet | 35               |
| 5  | Pek. Rigid Pavement t = 27 cm    | 43               | 5  | Pek. Rigid Pavement t = 27 cm    | 47               |
|    | Jalur B                          |                  |    | Jalur B                          |                  |
| 6  | Pek. Drainage Layer t = 15 cm    | 65               | 6  | Pek. Drainage Layer t = 15 cm    | 61               |
| 7  | Pek. Lean Concrete t = 10 cm     | 65               | 7  | Pek. Lean Concrete t = 10 cm     | 61               |
| 8  | Pemasangan Strecht Plastic Sheet | 32               | 8  | Pemasangan Strecht Plastic Sheet | 35               |
| 9  | Pek. Rigid Pavement t = 27 cm    | 43               | 9  | Pek. Rigid Pavement t = 27 cm    | 47               |
| II | PEKERJAAN BARRIER                |                  | II | PEKERJAAN BARRIER                |                  |
| 10 | Pek. Urugan Pasir                | 52               | 10 | Pek. Urugan Pasir                | 35               |
| 11 | Pemasangan DS – 3D               | 35               | 11 | Pemasangan DS – 3D               | 30               |
| 12 | Pek. Lantai Kerja Penutup        | 50               | 12 | Pek. Lantai Kerja Penutup        | 40               |
| 13 | Pembesian                        | 41               | 13 | Pembesian                        | 35               |
| 14 | Pemasangan Bekisting             | 25               | 14 | Pemasangan Bekisting             | 20               |
| 15 | Pengecoran                       | 45               | 15 | Pengecoran                       | 40               |
| 16 | Pemasangan Guard Rail            | 32               | 16 | Pemasangan Guard Rail            | 35               |


## Hubungan Keterkaitan Antar Pekerjaan

Terdapat beberapa metode dalam membuat hubungan keterkaitan antar pekerjaan salah satunya adalah metode CPM (*Critical Path Metode*). CPM adalah metode yang digunakan untuk mengendalikan dan mengetahui kegiatan-kegiatan yang berada di lintasan kritis dengan menggambarkannya ke dalam diagram. Penyusunan *Network Planning* dapat dilihat pada Tabel 2 di bawah ini.


Tabel 2 Network Planning Seksi 3-A & 3-B

| No | Uraian Kegiatan                  | Kode | Durasi<br>(Hari) | Aktivitas<br>Pendahulu | Lag Time<br>(Hari) |
|----|----------------------------------|------|------------------|------------------------|--------------------|
|    | Seksi 3-A                        |      |                  |                        |                    |
| 1  | Pek.Compacted Subgrade           | A    | 118              | -                      |                    |
| 2  | Pek.Drainage Layer t = 15 cm     | В    | 65               | A                      | 75                 |
| 3  | Pek.Lean Concretet t = 10 cm     | С    | 65               | A,B                    | 75,34              |
| 4  | Pemasangan Strecht Plastic Sheet | D    | 32               | Ċ                      | 34                 |
| 5  | Pek.Rigid Pavement t = 27 cm     | Ε    | 43               | C,D                    | 34,34              |
| 6  | Pek.Drainage Layer t = 15 cm     | F    | 65               | A                      | 75                 |
| 7  | Pek.Lean Concretet t = 10 cm     | G    | 65               | A,B                    | 75,34              |
| 8  | Pemasangan Strecht Plastic Sheet | H    | 32               | Ċ                      | 34                 |
| 9  | Pek.Rigid Pavement t = 27 cm     | I    | 43               | C,D                    | 34,34              |
| 10 | Pek.Urugan Pasir                 | J    | 52               | C,G                    | -                  |
| 11 | Pemasangan DS – 3D               | K    | 35               | J                      | 25                 |
| 12 | Pek.Lantai Kerja Penutup         | L    | 50               | K                      | 20                 |
| 13 | Pembesian                        | M    | 41               | J                      | -                  |
| 14 | Pemasangan Bekisting             | N    | 25               | M                      | -                  |
| 15 | Pengecoran                       | 0    | 45               | N                      | -                  |
| 16 | Pemasangan Guard Rail            | P    | 32               | 0                      | -                  |
|    | Seksi 3-B                        |      |                  |                        |                    |
| 1  | Pek.Compacted Subgrade           | A    | 118              |                        | -                  |
| 2  | Pek.Drainage Layer t = 15 cm     | В    | 61               | A                      | 58                 |
| 3  | Pek.Lean Concretet t = 10 cm     | С    | 61               | A.B                    | 58,23              |
| 4  | Pemasangan Strecht Plastic Sheet | D    | 35               | ć                      | 23                 |
| 5  | Pek.Rigid Pavement t = 27 cm     | E    | 47               | C,D                    | 23,23              |
| 6  | Pek.Drainage Layer t = 15 cm     | F    | 61               | A                      | 58                 |
| 7  | Pek.Lean Concretet t = 10 cm     | G    | 61               | A.B                    | 58,23              |
| 8  | Pemasangan Strecht Plastic Sheet | H    | 35               | ć                      | 23                 |
| 9  | Pek.Rigid Pavement t = 27 cm     | I    | 47               | C,D                    | 23,23              |
| 10 | Pek.Urugan Pasir                 | J    | 35               | C,G                    | -                  |
| 11 | Pemasangan DS - 3D               | K    | 30               | J                      | 18                 |
| 12 | Pek.Lantai Kerja Penutup         | L    | 40               | K                      | 14                 |
| 13 | Pembesian                        | M    | 35               | J                      | -                  |
| 14 | Pemasangan Bekisting             | N    | 20               | M                      | -                  |
| 15 | Pengecoran                       | 0    | 40               | N                      | -                  |
| 16 | Pemasangan Guard Rail            | p    | 35               | 0                      | -                  |

Lalu dari Tabel 2 di atas dapat dibuat ke dalam diagram yang dapat dilihat di bawah ini.



Gambar 3 Network Planning Jalan Utama Seksi 3-A



Gambar 4 Network Planning Jalan Utama Seksi 3-B

## Perhitungan Maju (Forward Pass)

Perhitungan maju adalah cara perhitungan yang dimulai dari awal proyek sampai akhir penyelesaian proyek yang digunakan untuk menghitung waktu penyelesaian tercepat dari sebuah kegiatan (*Earliest Finish* atau EF) dan waktu tercepat terjadinya kegiatan (*Earliest Start* atau ES). EF didapat dari hasil (ES + Durasi).

| Tabel 3 Perhitungan | Maju | (Forward | Pass) |
|---------------------|------|----------|-------|
|---------------------|------|----------|-------|

| No | Kode         | Durasi<br>(Hari) | ES  | EF  |
|----|--------------|------------------|-----|-----|
|    | SEKSI<br>3-A |                  |     |     |
| 1  | A            | 118              | 0   | 118 |
| 2  | В            | 65               | 75  | 140 |
| 3  | С            | 65               | 109 | 174 |
| 4  | D            | 32               | 143 | 175 |
| 5  | E            | 43               | 177 | 220 |
| 6  | F            | 65               | 75  | 140 |
| 7  | G            | 65               | 140 | 205 |
| 8  | H            | 32               | 143 | 175 |
| 9  | I            | 43               | 177 | 220 |
| 10 | J            | 52               | 205 | 257 |
| 11 | K            | 35               | 230 | 265 |
| 12 | L            | 50               | 250 | 300 |
| 13 | M            | 41               | 257 | 298 |
| 14 | N            | 25               | 298 | 323 |
| 15 | 0            | 45               | 323 | 368 |

| 16  | P     | 32  | 368 | 400 |
|-----|-------|-----|-----|-----|
|     | SEKSI |     |     |     |
|     | 3-B   |     |     |     |
| _1_ | A     | 118 | 0   | 118 |
| _ 2 | В     | 61  | 58  | 119 |
| 3   | С     | 61  | 81  | 142 |
| 4   | D     | 35  | 104 | 139 |
| 5   | Е     | 47  | 127 | 174 |
| 6   | F     | 61  | 58  | 119 |
| 7   | G     | 61  | 119 | 180 |
| 8   | H     | 35  | 104 | 139 |
| 9   | I     | 47  | 127 | 174 |
| 10  | J     | 35  | 180 | 215 |
| 11  | K     | 30  | 198 | 228 |
| 12  | L     | 40  | 212 | 252 |
| 13  | M     | 35  | 215 | 250 |
| 14  | N     | 20  | 250 | 270 |
| 15  | 0     | 40  | 270 | 310 |
| 16  | P     | 35  | 310 | 345 |

## Perhitungan Mundur (Backward Pass)

Setelah mengetahui nilai EF maka selanjutnya adalah melakukan perhitungan mundur. Perhitungan mundur adalah perhitungan dari akhir proyek menuju awal proyek untuk mengetahui waktu paling lambat terjadinya suatu kegiatan (*Latest Finish* atau LF) dan waktu paling lambat terjadinya suatu kegiatan (*Latest Start* atau LS). LS didapat dari hasil perhitungan (LF – Durasi).

Tabel 4 Perhitungan Mundur (Backward Pass)

| No    | Kode       | Durasi<br>(Hari) | LS     | LF      |
|-------|------------|------------------|--------|---------|
|       | SEKSI      |                  |        |         |
|       | 3-A        |                  |        |         |
| 1     | A          | 118              | 0      | 118     |
| 2     | В          | 65               | 75     | 140     |
| 3     | С          | 65               | 109    | 174     |
| 4     | D          | 32               | 143    | 175     |
| 5     | E          | 43               | 177    | 220     |
| 6     | F          | 65               | 75     | 140     |
| 7     | G          | 65               | 140    | 205     |
| 8     | Н          | 32               | 143    | 175     |
| 9     | I          | 43               | 177    | 220     |
| Tabel | 4 Perhitun | gan Mundur       | (Backw | ard Pas |
|       |            | (Lanjutan)       |        |         |
| No    | Kode       | Durasi<br>(Hari) | LS     | LF      |
| 10    | J          | 52               | 205    | 257     |
| 11    | K          | 35               | 330    | 365     |
| 12    | L          | 50               | 350    | 400     |
| 13    | M          | 41               | 257    | 298     |

| 14 | N     | 25  | 298 | 323 |
|----|-------|-----|-----|-----|
| 15 | 0     | 45  | 323 | 368 |
| 16 | P     | 32  | 368 | 400 |
|    | SEKSI |     |     |     |
|    | 3-B   |     |     |     |
| 1  | A     | 118 | 0   | 118 |
| 2  | В     | 61  | 58  | 119 |
| 3  | С     | 61  | 81  | 142 |
| 4  | D     | 35  | 104 | 139 |
| 5  | E     | 47  | 127 | 174 |
| 6  | F     | 61  | 58  | 119 |
| 7  | G     | 61  | 119 | 180 |
| 8  | Н     | 35  | 104 | 139 |
| 9  | I     | 47  | 127 | 174 |
| 10 | J     | 35  | 180 | 215 |
| 11 | K     | 30  | 291 | 321 |
| 12 | L     | 40  | 305 | 345 |
| 13 | M     | 35  | 215 | 250 |
| 14 | N     | 20  | 250 | 270 |
| 15 | 0     | 40  | 270 | 310 |
| 16 | P     | 35  | 310 | 345 |
|    |       |     |     |     |

# Perhitungan Total Float (TF)

Total Float (TF) adalah jumlah waktu suatu kegiatan dapat ditunda tanpa memperlambat waktu dari penyelesaian proyek. Perhitungan Total Float dapat dilakukan dengan cara (LS – ES) atau (LF – EF). Suatu kegiatan dapat dikatakan kritis apabila memiliki nilai Total Float = 0.

Tabel 5 Perhitungan Total Float

| No  | Kode   | Durasi | ES  | EF  | LS  | LF  | TF  | No  | Kode    | Durasi | ES  | EF  | LS  | LF  | TF |
|-----|--------|--------|-----|-----|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|----|
| CEL | CT 2 A | (Hari) |     |     |     |     |     | CET | TOT A D | (Hari) |     |     |     |     |    |
| SEK | SI 3-A |        |     |     |     |     |     | SEK | KSI 3-B |        |     |     |     |     |    |
| 1   | A      | 118    | 0   | 118 | 0   | 118 | 0   | 1   | A       | 118    | 0   | 118 | 0   | 118 | 0  |
| 2   | В      | 65     | 75  | 140 | 75  | 140 | 0   | 2   | В       | 61     | 58  | 119 | 58  | 119 | 0  |
| 3   | С      | 65     | 109 | 174 | 109 | 174 | 0   | 3   | С       | 61     | 81  | 142 | 81  | 142 | 0  |
| 4   | D      | 32     | 143 | 175 | 143 | 175 | 0   | 4   | D       | 35     | 104 | 139 | 104 | 139 | 0  |
| 5   | Е      | 43     | 177 | 220 | 177 | 220 | 0   | 5   | Е       | 47     | 127 | 174 | 127 | 174 | 0  |
| 6   | F      | 65     | 75  | 140 | 75  | 140 | 0   | 6   | F       | 61     | 58  | 119 | 58  | 119 | 0  |
| 7   | G      | 65     | 140 | 205 | 140 | 205 | 0   | 7   | G       | 61     | 119 | 180 | 119 | 180 | 0  |
| 8   | Н      | 32     | 143 | 175 | 143 | 175 | 0   | 8   | Н       | 35     | 104 | 139 | 104 | 139 | 0  |
| 9   | I      | 43     | 177 | 220 | 177 | 220 | 0   | 9   | I       | 47     | 127 | 174 | 127 | 174 | 0  |
| 10  | J      | 52     | 205 | 257 | 205 | 257 | 0   | 10  | J       | 35     | 180 | 215 | 180 | 215 | 0  |
| 11  | K      | 35     | 230 | 265 | 330 | 365 | 100 | 11  | K       | 30     | 198 | 228 | 291 | 321 | 93 |
| 12  | L      | 50     | 250 | 300 | 350 | 400 | 100 | 12  | L       | 40     | 212 | 252 | 305 | 345 | 93 |
| 13  | M      | 41     | 257 | 298 | 257 | 298 | 0   | 13  | M       | 35     | 215 | 250 | 215 | 250 | 0  |
| 14  | N      | 25     | 298 | 323 | 298 | 323 | 0   | 14  | N       | 20     | 250 | 270 | 250 | 270 | 0  |
| 15  | О      | 45     | 323 | 368 | 323 | 368 | 0   | 15  | О       | 40     | 270 | 310 | 270 | 310 | 0  |
| 16  | P      | 32     | 368 | 400 | 368 | 400 | 0   | 16  | P       | 35     | 310 | 345 | 310 | 345 | 0  |

# Identifikasi Kegiatan Kritis

Setelah menentukan total *float* dari pekerjaan-pekerjaan di atas, maka dapat diketahui kegiatan mana saja yang berada pada jalur kritis dengan melihat kegiatan yang memiliki nilai *float* = 0. Berdasarkan dari hasil analisis menggunakan diagram *network planning* yang dapat dilihat pada Gambar 1 dan Gambar 2 di dapatkan 4 (empat) jalur lintasan kritis, yaitu

1. Seksi 3-A

a. A-F-G-J-M-N-O-P = 118 + 65 + 65 + 52 + 41 + 25 + 45 + 32 = 443 hari b. A-B-C-J-M-N-O-P = 118 + 65 + 65 + 52 + 41 + 25 + 45 + 32 = 443 hari c. A-B-G-J-M-N-O-P = 118 + 65 + 65 + 52 + 41 + 25 + 45 + 32 = 443 hari d. A-C-J-M-N-O-P = 118 + 65 + 52 + 41 + 25 + 45 + 32 = 378 hari 2. Seksi 3-B

```
a. A-F-G-J-M-N-O-P = 118 + 61 + 61 + 35 + 35 + 20 + 40 + 35 = 405 hari
b. A-B-C-J-M-N-O-P = 118 + 61 + 61 + 35 + 35 + 20 + 40 + 35 = 405 hari
c. A-B-G-J-M-N-O-P = 118 + 61 + 35 + 35 + 20 + 40 + 35 = 405 hari
d. A-C-J-M-N-O-P = 118 + 61 + 35 + 35 + 20 + 40 + 35 = 344 hari
```

Berdasarkan perhitungan jalur kritis di atas untuk masing-masing seksi 3-A dan 3-B, maka dapat dilihat yang memiliki durasi paling lama adalah yang masuk ke dalam lintasan kritis. Maka dipilih jalur lintasan kritis 1 untuk seksi 3-A dan jalur lintasan kritis 1 untuk seksi 3-B.

Tabel 6 Rekapitulasi Kegiatan Kritis

| No | Uraian Kegiatan               | Kode | Total Float | No | Uraian Kegiatan               | Kode | Total Float |
|----|-------------------------------|------|-------------|----|-------------------------------|------|-------------|
|    | SEKSI 3-A                     |      |             |    | SEKSI 3-B                     |      |             |
| 1  | Pek. Compacted Subgrade       | A    | 0           | 9  | Pek. Compacted Subgrade       | A    | 0           |
| 2  | Pek. Drainage Layer t = 15 cm | F    | 0           | 10 | Pek. Drainage Layer t = 15 cm | F    | 0           |
| 3  | Pek. Lean Concrete t = 10 cm  | G    | 0           | 11 | Pek. Lean Concrete t = 10 cm  | G    | 0           |
| 4  | Pek. Urugan Pasir             | J    | 0           | 12 | Pek. Urugan Pasir             | J    | 0           |
| 5  | Pembesian                     | M    | 0           | 13 | Pembesian                     | M    | 0           |
| 6  | Pemasangan Bekisting          | N    | 0           | 14 | Pemasangan Bekisting          | N    | 0           |
| 7  | Pengecoran                    | О    | 0           | 15 | Pengecoran                    | О    | 0           |
| 8  | Pemasangan Guard Rail         | P    | 0           | 16 | Pemasangan Guard Rail         | P    | 0           |

## Analisis Metode Time Cost Trade Off

Analisis dengan menggunakan metode *Time Cost Trade Off* adalah analisis dengan melakukan pertukaran waktu dan biaya yang biasanya akan mengalami kenaikan biaya di dalam pelaksanaannya. Pada penelitian tugas akhir ini akan dilakukan proses percepatan pada item pekerjaan lintasan kritis dengan menambah jam kerja lembur dan penambahan jumlah tenaga kerja.

Pada perhitungan metode *time cost trade off* akan dilakukan dengan menggunakan 4 (empat) kombinasi, yaitu :

- 1. Kombinasi 1 = Penambahan 20% tenaga kerja dan 1 jam waktu lembur
- 2. Kombinasi 2 = Penambahan 20% tenaga kerja dan 2 jam waktu lembur
- 3. Kombinasi 3 = Penambahan 20% tenaga kerja dan 3 jam waktu lembur
- 4. Kombinasi 4 = Penambahan 20% tenaga kerja dan 4 jam waktu lembur

#### Perhitungan Produktivitas Akibat Kombinasi

Perhitungan untuk mendapatkan produktivitas per hari dengan waktu jam kerja normal 8 jam dan penambahan 20% tenaga kerja serta penambahan 1, 2, 3, dan 4 jam lembur yang akan dilakukan pada setiap pekerjaan kritis yang dapat dilihat pada Tabel 7 di bawah ini.

Tabel 7 Rekapitulasi Produktivitas Akibat Kombinasi

| No | Item Pekerjaan               |                 | Produktivi      | tas Crash       |                 |
|----|------------------------------|-----------------|-----------------|-----------------|-----------------|
|    | ervers s                     | Kombinasi<br>1  | Kombinasi<br>2  | Kombinasi<br>3  | Kombinasi<br>4  |
|    | SEKSI 3-A                    | l jam<br>lembur | 2 jam<br>lembur | 3 jam<br>lembur | 4 jam<br>lembur |
| 1  | Pek.Compacted Subgrade       | 581,134         | 633,371         | 679,078         | 718,256         |
| 2  | Pek Drainage Layer t = 15 cm | 173,939         | 189,574         | 203,255         | 214,981         |
| 3  | Pek Lean Concrete t = 10 cm  | 109,050         | 118,853         | 127,430         | 134,781         |
| 4  | Pek Urugan Pasir             | 18,844          | 20,538          | 22,020          | 23,291          |
| 5  | Pek.Pembesian                | 11035,557       | 12027,518       | 12895,483       | 13639,453       |
| 6  | Pek Bekisting                | 992,733         | 1081,968        | 1160,048        | 1226,974        |
| 7  | Pengecoran                   | 88,082          | 95,999          | 102,927         | 108,865         |
| 8  | Pek Konstruksi Guard Rail    | 418,173         | 455,761         | 488,651         | 516,842         |
|    | SEKSI 3-B                    |                 | 7.777           |                 |                 |
| 9  | Pek.Compacted Subgrade       | 354,914         | 386,816         | 414,731         | 438,657         |
| 10 | Pek.Drainage Layer t = 15 cm | 104,485         | 113,877         | 122,095         | 129,139         |
| 11 | Pek.Lean Concrete t = 10 cm  | 67,276          | 73,323          | 78,614          | 83,150          |
| 12 | Pek Urugan Pasir             | 17,896          | 19,505          | 20,912          | 22,119          |
| 13 | Pek Pembesian                | 7351,321        | 8012,114        | 8590,308        | 9085,903        |
| 14 | Pek.Bekisting                | 769,916         | 839,122         | 899,677         | 951,581         |
| 15 | Pengecoran                   | 62,523          | 68,143          | 73,060          | 77,275          |
| 16 | Pek.Konstruksi Guard Rail    | 277,595         | 302,548         | 324,381         | 343,095         |

## Crash Duration

*Crash duration* diperhitungkan berdasarkan percepatan yang digunakan, yaitu menambah tenaga pekerja dan jam kerja. Dengan adanya penambahan tersebut dapat meningkatkan produktivitas kerja sehingga memperpendek durasi pelaksanaan proyek.

Tabel 8 Rekapitulasi Crash Duration

| No | Uraian                               | Durasi<br>Normal | Durasi<br>Kombinasi | Durasi<br>Kombinasi | Durasi<br>Kombinasi | Durasi<br>Kombinasi |
|----|--------------------------------------|------------------|---------------------|---------------------|---------------------|---------------------|
|    | Kegiatan                             |                  | 1                   | 2                   | 3                   | 4                   |
|    |                                      | Hari             | Hari                | Hari                | Hari                | Hari                |
|    | SEKSI 3-A                            |                  |                     |                     |                     |                     |
| 1  | Pek.Compacted<br>Subgrade            | 118              | 105                 | 96                  | 90                  | 85                  |
| 2  | Pek.Drainage<br>Layer t = 15         |                  |                     |                     | 40                  |                     |
|    | cm                                   | 65               | 56                  | 52                  | 48                  | 46                  |
| 3  | Pek.Lean<br>Concrete t = 10          |                  |                     |                     |                     |                     |
| _  | cm                                   | 65               | 53                  | 49                  | 45                  | 43                  |
| 4  | Pek.Urugan<br>Pasir                  | 52               | 48                  | 26                  | 24                  | 23                  |
| 5  | Pembesian                            | 41               | 37                  | 34                  | 32                  | 30                  |
| 6  | Pemasangan<br>Bekisting              | 25               | 22                  | 21                  | 19                  | 18                  |
| 7  | Pengecoran                           | 45               | 38                  | 35                  | 33                  | 31                  |
| 8  | Pemasangan<br>Guard Rail             | 32               | 28                  | 26                  | 24                  | 23                  |
|    | SEKSI 3-B                            |                  |                     |                     |                     |                     |
| 9  | Pek.Compacted<br>Subgrade            | 118              | 104                 | 96                  | 89                  | 84                  |
| 10 | Pek. <i>Drainage</i><br>Layer t = 15 |                  |                     |                     |                     |                     |
|    | cm                                   | 61               | 52                  | 47                  | 44                  | 42                  |
| 11 | Pek.Lean<br>Concrete t = 10          |                  |                     |                     |                     |                     |
|    | cm                                   | 61               | 46                  | 43                  | 40                  | 38                  |
| 12 | Pek.Urugan<br>Pasir                  | 35               | 18                  | 17                  | 16                  | 15                  |
| 13 | Pembesian                            | 35               | 31                  | 29                  | 27                  | 25                  |
| 14 | Pemasangan<br>Bekisting              | 20               | 18                  | 16                  | 15                  | 14                  |
| 15 | Pengecoran                           | 40               | 33                  | 31                  | 29                  | 27                  |
| 16 | Pemasangan<br>Guard Rail             | 35               | 31                  | 28                  | 26                  | 25                  |
| _  |                                      |                  |                     |                     |                     |                     |

# Crash Cost

Crash Cost adalah biaya langsung pertambahan akibat percepatan yang dilakukan akibat masingmasing kombinasi.

Tabel 9 Rekapitulasi Crash Cost

| Ne  | Uraian Kegiatan                 | Biaya Grashing<br>Kombinasi I | Biaya Crasking<br>Kembinasi 2 | Biaya Crashing<br>Kombinasi 3 | Biaya Crusking<br>Kombinasi 4 |
|-----|---------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|     | SEKSI 3-A                       |                               |                               |                               |                               |
| T   | Pek Compacted<br>Subgrade       | Rp. 493.783.611               | Rp. 548.440.072               | Hp. 600.496.851               | Rp. 651 841.619               |
| 2   | Pek Drawage<br>Layer t = 15 cm  | Rg. 3.508.692.359,64          | Rp. 3.897.066.337,59          | Rp. 4.266.896.629.67          | Rp. 4.631.809.674,76          |
| 3.  | Pek Laun Concress<br>t = 10 cm. | Rg. 4.857.665.561             | Rp. 5.283.942.001             | Rp. 5.785.386.330             | Np. 6.280.163.477             |
| 4   | Pek, Unigan Pasis               | Rp. 132-257-636               | Ep. 146.896.448               | Ray, 160, 836, 871            | Rp. 174.591.944               |
| 3   | Pembenian                       | Rp. 1.372.743.772             | Rp. 1.524.691.537             | Rp. 1.669.384.254             | Bp. 1.812.153.143             |
| 6   | Pemasangan<br>Bekisting         | Rp. 3.390.278.320             | Rp. 3.765.545.155             | Rp. 4.122.894.131             | Rp. 4.475.491.811             |
| 7.  | Pengecoran                      | Rp. 3.811.130.747             | Rp. 4.232.981.356             | Rp. 4.634.689.871             | Rp. 5.031.057.288             |
| 8   | Pemanangan<br>Guard Rati        | Rp. 11.242.943.853            | Rp. 12-487-415-120            | Rp. 13.672.466.639            | Rp. 14.841.761.765            |
| 2,5 | SEKSI 3-B                       |                               |                               |                               |                               |
| à   | Pek Compacted<br>Subgrade       | Rp. 326.839.107               | Rp. 363.016.631               | Rp. 397.466.788               | Rp. 431.458.897               |
| 10  | Pek Drainage<br>Layer t = 15 cm | Rp. 1 901 425 172             | Rp. 2.111.892.201             | Rp. 2312310.063               | Rp. 2.510.063.181             |
| 11. | Pek Lean Concrete<br>t = 10 cm  | Rp. 2.628.604.275             | Rp. 2.699.618.558             | Bp. 2.955.811.456             | Rp. 3.208.598.625             |
| 10  | Pek Urugan Panir                | Rp. 80.188.125                | Bp. 89.064.075                | Rp. 97.316.226                | Rp. 105.855.998               |
| 13  | Pemberian                       | Rp. 757.689.567               | Rp. 874.87\$.545              | Rp. 957.904.226               | Rp. 1 839 826 001             |
| 14  | Personangan<br>Bekasting        | Rp. 2.090.276.012             | Ep. 2.321.646.770             | Rp. 2.541.970.272             | Bp. 2.759.364.362             |
| 15  | Pengecoran                      | Fp. 2.308.545.894             | Rp. 2.561.938.352             | Rp. 2.805.087.345             | Rp. 3.044.983.702             |
| 16  | Pensangan<br>Guard Rail         | Rp. 8.823.822.670             | Rp. 8.911.972.331             | Hp. 9.757.715.525             | Bp. 10.392.213.755            |
|     |                                 |                               |                               |                               |                               |

## Biaya Langsung, Tidak Langsung, dan Biaya Total

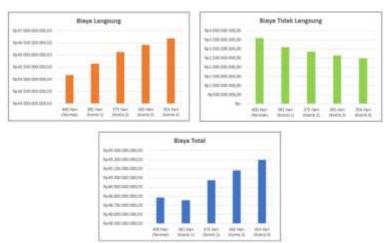
Tabel 10 Biaya Langsung, Tidak Langsung, dan Biaya Total Kombinasi 1

| Ne  | Itom Pekerjaan<br>SEKSI 3-A     | Bigs     |                   |                     |                |                        |                   |  |
|-----|---------------------------------|----------|-------------------|---------------------|----------------|------------------------|-------------------|--|
| 700 |                                 | Language |                   | Tidak Language      |                | Total Biana            |                   |  |
|     |                                 |          |                   |                     |                |                        |                   |  |
| 1   | Pok:Comparted Subgrade          | Hz.      | 404.038.199.75    | Ro                  | 28.226.167.37  | Re                     | 432,264,367,12    |  |
| 2   | Pek Dramaja Layar ( = 1)        | Re       | 1.381.048.726.36  | Rec                 | 233.666.235.30 | Re                     | 3.614.714.961.66  |  |
| 3   | Pek Lean Connets t = 10 ion     | Ex       | 4.865.910,979.91  | 80                  | 316,034,937,25 | Be                     | 5.181.985.891.14  |  |
| 4   | Pak Urugan Pasis                | By       | 366,717,622,31    | Rp.                 | 7,309,242,55   | Re                     | 173,926,864,56    |  |
| 1   | Pek Pepheum                     | Ra       | 1,288,686,854,68  | Sec.                | 96,711,542,81  | Ba                     | 1,979,398,397,49  |  |
| 6   | Pek Behirting                   | Ep       | 1.259.498.183.19  | Ip.                 | 227,592,334,93 | Eg                     | 3.487.090.518,13  |  |
| 1   | Pengecoran                      | Es.      | 1.750.901.145.82  | Su.                 | 255,367,249,07 | :Ba                    | 4 996 288 394 58  |  |
| 1   | Pek Konstruksi Grand Radi       | Eg       | 10.844.256,042,02 | Rp:                 | 755,734,342,60 | Tip.                   | 11.599.960.184,01 |  |
|     | 5EK50.3-B                       |          |                   | 1100                |                |                        |                   |  |
| 1   | Pek Compacted Subgrade          | Bg.      | 346.894.546,38    | .Bp                 | 17.012.512.20  | Eg                     | 263.907.058,53    |  |
| 2   | Pek Drawage Layer 1 = 11<br>ons | Eg.      | 1.857.307.283,03  | 70                  | 125,813,557,62 | Ep                     | 1.962.920.842,65  |  |
| 3   | Psk Lean Commete t = 10 cm.     | En       | 2.642.138.634.46  | Re                  | 159.849.332.37 | Re                     | 2.801.987.986.63  |  |
| 4   | Pek Urugan Pastr                | Eg       | 003.359(494)71    | 10                  | 4.296.800,29   | Eg                     | 107.656,298,99    |  |
| 3   | PskPenheum                      | Ea       | 737.216.862.31    | To.                 | 51,556,329.09  | Es.                    | 788,773,391,40    |  |
| 6   | Pek Beluring                    | Ra       | 2.020.569.469,55  | to.                 | 139,730,333,35 | Ep                     | 1,160,339,814,08  |  |
| 1   | Рупцисован                      | Ea       | 2.308.834.700.15  | To.                 | 154,192,345,78 | Ba                     | 2,483,027,045,93  |  |
| 1   | Pek Koustralesi Grand Radi      | . Far    | 1,771,739,081,09  | P.p.                | 538,715,054,80 | Bp.                    | 8.310.414.137,89  |  |
|     |                                 | .Ba      | 65,649,157,842,52 | Ra 3.105.535.315.62 |                | Stp. 45,754,896,161,14 |                   |  |

Tabel 12 Biaya Langsung, Tidak Langsung, dan Biaya Total Kombinasi 3

| No  | ltom Pekerjaan<br>SEKSI 3-A | Bigs                 |                   |                     |                |                      |                   |  |
|-----|-----------------------------|----------------------|-------------------|---------------------|----------------|----------------------|-------------------|--|
|     |                             |                      | Language          | - 1                 | dak Langmag    |                      | Total Biaya       |  |
|     |                             |                      |                   |                     |                | - 32 (32 (32 )       |                   |  |
| 1   | Pek Compacted Sobgrade      | Re                   | 403 311 115 09    | 30                  | 34,155,065,34  | Bo                   | 427,966,200,65    |  |
| 2   | Poli Drawage Layer ( = 15   | For                  | 3.408.237.140.00  | To.                 | 199,964,374,44 | Rp                   | 1.688.179.515.42  |  |
| 3   | Pet Leau Counts t = 10 im.  | To.                  | 4,904,615,167,18  | Bo.                 | 270,470,073,42 | Se.                  | 3.175 083 180,60  |  |
| 4   | Pok Uragan Pastr            | Re                   | 107,481,489,87    | Zp.                 | 6.359,447,76   | Rp.                  | 171.630.945,76    |  |
| 3   | Pek Pembesian               | For                  | 1.305.105.484369  | Ip:                 | 17.628.147.21  | Re                   | 1.342.729.631,81  |  |
|     | Pek Bekirting               | Ra                   | 3.340.375.283,62  | To                  | 194,786,537,39 | Hp.                  | 3.335.337,799,03  |  |
| 2   | Pengunoran                  | Ra                   | 3.813.882.700,00  | To.                 | 218.533.434,30 | Hp.                  | 4.002.418.135,91  |  |
| 1   | Pek Kirastrykni Guard Rod   | Rp.                  | 11.079.220.962,45 | Tp.                 | 646,735,467,68 | Mp.                  | 31,725,946,430,13 |  |
|     | SEKSI J.B                   |                      |                   |                     |                | . Ite.               |                   |  |
| 1.  | Pek Compacted Subgrade      | . Re.                | 246,059,049,64    | Rp.                 | 14.238.284.23  | Hp.                  | 260,617,834,47    |  |
| 2   | Pek Dramage Layer (+1)      | Ra.                  | 1,879,478,787,88  | Ip.                 | 101.496,217,38 | IIp.                 | 1,996,972,994,66  |  |
| 3   | Pek Lego Concrete t = 17 cm | Re                   | 2,653,241,014,14  | Eρ                  | 136.794.337,13 | 20                   | 2.790.685.171,28  |  |
| 4   | Pek Uragan Paner            | Eq.                  | 100.278.318,38    | Sp.                 | 3.877.069,48   | Re                   | 105,653,585,84    |  |
| 5   | Pet Penheyan                | Ja.                  | 747.217.002.48    | 20                  | 44.120.491.24  | No.                  | 791,337,493,73    |  |
| d : | Pek Bekintug                | Fig.                 | 2,083,992,648,43  | Ro.                 | 119:394.033.44 | Re                   | 2.203.586.683,80  |  |
| 3   | Pesgecoras                  | Ea                   | 2,312,190,063,60  | Bp.                 | 131,933,0e5,34 | Bp                   | 2,484,145,128,74  |  |
| 1   | Pek Kourtrakis Guard Rust   | For                  | 7.931.410.043.25  | Re                  | 461,015,769,78 | Re                   | 1,392,425 813,00  |  |
|     |                             | Rp 46.424.560.394,24 |                   | Re 1.657.624.158.06 |                | Rp 48.884.184.532,29 |                   |  |

Tabel 11 Biaya Langsung, Tidak Langsung, dan Biaya Total Kombinasi 2


| No | lion Pekerjaan<br>SEKSI 3-A    | Biaja |                   |                     |                |                      |                   |  |  |
|----|--------------------------------|-------|-------------------|---------------------|----------------|----------------------|-------------------|--|--|
|    |                                |       | Lautung           | T                   | dak Lanerung   |                      | Total Biaya       |  |  |
|    |                                |       |                   |                     |                |                      |                   |  |  |
| 1  | Pek Comparted Subgrade         | 30    | 469,576,324,75    | 80                  | 25.896.236.04  | Bar                  | 429.474.360.79    |  |  |
| 1  | Pek:Dramage Layer t = 15       | 24    | 11.404.406.172,61 | Ep.                 | 214.394.793,21 | Tip.                 | 1.615.000.965,51  |  |  |
| 3  | Pak Lean Concrete t = 10 cm    | Te.   | 4.885.508.591.28  | Za.                 | 259.955.332.32 | Ee.                  | 1,113,491,123,60  |  |  |
| 4  | Poli Urugan Pasir              | 34    | 166.028.700.33    | 30                  | 6.614.665,64   | Br                   | 172,643,365,83    |  |  |
| 5  | Pek Pemberian                  | Bp.   | 1.288.383.065.26  | Bp.                 | 83,250,178,45  | Ber                  | 1.381.813.243.71  |  |  |
| 6  | Pek Behinting                  | 14    | 3.310.265.405.51  | T.p.                | 208.521.033,08 | . Ha                 | 3.539.067.238,60  |  |  |
| 1  | Pangaronan                     | Zu    | 1.790,641,965,71  | Ja.                 | 234.306.031.65 | Me                   | 4,024,850,001,40  |  |  |
| 1  | Pek Konstraksi Guard Rad       | 80    | 18,999,363,421,54 | Re .                | 699,396,377,72 | Re                   | 11,686,759,885,26 |  |  |
|    | SERS1 3-B                      |       |                   |                     |                | Re                   |                   |  |  |
| k. | Pak Compacted Subgrade         | Ep.   | 248,090,171,62    | to.                 | 15.609.418,46  | Bp.                  | 281.899.390,09    |  |  |
| 2  | Pek Dramage Layer t = 15<br>cm | 10    | 1.871.165.543,95  | 14                  | D3 253 678,58  | Bp                   | 1.988.419.220,51  |  |  |
| 3  | Pek Lean Concrete t = 10 cm    | Za.   | 3.643.182.000.70  | 34                  | 146,665,500,44 | Ba.                  | 2.189.847.900.11  |  |  |
| 4  | Pek Crugan Pasis               | 80    | 100,759,355,33    | 80                  | 3.942.425.01   | Ber                  | 396,700,780,39    |  |  |
| 5  | Pek Pephesins                  | Sp.   | 743,096,677,69    | 82                  | 47384.444.21   | 82                   | 798,385,328,90    |  |  |
| ĕ  | Pek Bekering                   | 14    | 1,060,378,085,04  | Tp:                 | 128,224,512,85 | Ep.                  | 1.018.002.627,68  |  |  |
| Ť. | Pengacoran                     | 34    | 1,335,828,541,87  | Ta .                | 141.475.431.28 | Sa.                  | 1417.305.895.25   |  |  |
| 1  | Pek Kopstrulos Guard Kail      | 80    | T 813 082 033 54  | 35                  | 494,284,949,02 | Bg                   | 8,367,366,982,96  |  |  |
|    |                                | Se.   | 46.326.028.876.00 | Rp 1.849.411.446.95 |                | Ro 48.979.440.322.98 |                   |  |  |

Tabel 13 Biaya Langsung, Tidak Langsung, dan Biaya Total Kombinasi 4

| No | Tree Pekerjaan<br>SEKSUS-A   | Bier |                      |      |                     |                |                      |  |
|----|------------------------------|------|----------------------|------|---------------------|----------------|----------------------|--|
|    |                              |      | Language             | T    | shik Languag        |                | Total Start          |  |
|    |                              |      |                      |      |                     |                |                      |  |
| 1  | Prix Conquerted Subgrade     | The  | 464.291.034.14       | Ex   | 22.857.538.42       | 74             | 427,125,589,50       |  |
| 2  | Pel: Dissisage Layer 1 = 13. | No.  | 3.429.725.350.30     | Re   | 189.037.226.74      | 20             | 3.638.780.577.06     |  |
| 3  | Pelc Lasa Concrete t = 10 cm | Sp   | 4.921.690.215.11     | Re   | 255,717,160,12      | Sp             | 5.177.377.375.4      |  |
| 4  | Pets Unages Penn             | Hp.  | 365-698-903,06       | Ra   | 1.812.912.43        | . Sp           | 173,471,834,4        |  |
| 5  | Pric Prostession             | Be   | 1.311.254.090,17     | Re   | 73,093,004,63       | . Est          | 1384.697.874.9       |  |
| 5  | Poli Debiroug                | Be   | 3,367,082,938,34     | Re.  | 184,142,889,17      | Re             | 3.551.225.827.5      |  |
| 7  | Pergecoon                    | Re-  | 9.832.854.186.63     | Br   | 206.615.319.70      | Re             | 4.039.469.506.3      |  |
| \$ | Psk Kinstroke Guard Rad      | He.  | 11.172.295381;52     | Ra   | 411.449.533,00      | Tq.            | 11.763.747.816.6     |  |
| -  | SEKSUS-B                     |      | 4.00                 | m) D | 9.151.980.00        | -0.8           |                      |  |
| 1  | Pelc Comparted Subgrade      | Br.  | 250.088.875,05       | Re   | 19,764,669,01       | 3°p            | 263,952,844,0        |  |
| 2  | Fel: Drininge Layer ( = 15)  | Be   | 1.886.935.035.65     | Ra   | 101.692.787.59      | Ye             | 1892,992,823,0       |  |
| 3  | Pel: Lean Concrete t = 10 cm | Bp.  | 2.841.734.756.58     | Re   | 129.3323657366      | Ye             | 2,791,067,414,2      |  |
| 4  | Pric Uruges Pace             | Bp.  | 102.231.301,01       | Ra   | 3,416,982,05        | Te             | 100.707.603/0        |  |
| 3  | Prix Peurlesson              | Sta. | 151,228,199,26       | Ra   | 41.213.918.99       | T <sub>E</sub> | 792,942,116,2        |  |
| 5  | Tel: Believag                | 82   | 2.994.773.742.34     | Ra   | 113,670,724,42      | Se             | 2.217.844.466.7      |  |
| 7  | Peopecoras                   | 80   | 2.965.430.896.02     | Re   | 134,755,625,33      | 30             | 2.490.186.521.2      |  |
| 3  | Pel, Konstrakni Oweré Bail   | Hp.  | 1.980.275.844,78     | Ra-  | 431.889.455,01      | . Sp.          | 1.416.145.299,3      |  |
|    |                              | Ra.  | Rp 46.656,997,951,01 |      | Rp 2.512.662.821,43 |                | Rg 49.189.669.772,45 |  |

## **Durasi Optimal Proyek**

Durasi optimal proyek adalah durasi tercepat proyek dapat diselesaikan dengan pengeluaran biaya yang paling minimum. Biaya langsung proyek akan lebih mahal jika durasi mengalami percepatan, sedangkan biaya tidak langsung proyek akan menurun jika durasi semakin cepat. Dari hasil biaya langsung, biaya tidak langsung, dan biaya total dengan kombinasi 1, 2, 3, dan 4 maka dapat dibuat grafik perbandingan untuk melihat kombinasi mana yang menghasilkan durasi optimum proyek.



Gambar 5 Biaya Langsung, Tidak Langsung, dan Biaya Total Akibat Kombinasi

## **KESIMPULAN**

Berdasarkan hasil dari penelitian dan pembahasan yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

- 1) Dengan menggunakan *Network Planning* untuk mencari aktivitas-aktivitas lintasan kritis maka di dapatkan sebanyak 16 aktivitas yang berada pada lintasan kritis Seksi 3-A dan Seksi 3-B, yaitu untuk Seksi 3-A adalah Pekerjaan *Compacted Subgrade*, Pekerjaan *Drainage Layer*, Pekerjaan *Lean Concrete*, Pekerjaan Urugan Pasir, Pembesian, Pemasangan Bekisting, Pengecoran, dan *Guard Rail*. Untuk Seksi 3-B adalah Pekerjaan *Compacted Subgrade*, Pekerjaan *Drainage Layer*, Pekerjaan *Lean Concrete*, Pekerjaan Urugan Pasir, Pembesian, Pemasangan Bekisting, Pengecoran, dan *Guard Rail*.
- 2) Berdasarkan analisis metode *Time Cost Trade Off* dengan durasi normal pekerjaan Jalan Utama/ *Main Road* selama 400 hari dengan biaya sebesar Rp. 93.657.195.934,51 yang berada pada aktivitas kritis dengan menggunakan kombinasi 1 menjadi 381 hari dengan penghematan biaya sebesar Rp. 32.201.092,44, dengan menggunakan kombinasi 2 menjadi 375 hari dengan penambahan biaya sebesar Rp. 188.543.069,40, dengan menggunakan kombinasi 3 menjadi 365 hari dengan penambahan biaya sebesar Rp. 297.287.278,72, dan dengan kombinasi 4 menjadi 354 hari dengan penambahan biaya sebesar Rp. 412.763.518,87...

#### **SARAN**

Berdasarkan analisis dan kesimpulan di atas maka saran yang dapat diberikan adalah sebagai berikut:

- 1) Penjadwalan proyek dapat dilakukan dengan berbagai macam metode salah satunya adalah dengan menggabungkan metode PDM, *Bar (Gantt Chart)*, dan *Time Cost Trade Off* untuk lebih menunjukkan hubungan keterkaitan antar pekerjaan.
- Dapat melakukan percepatan proyek dengan menggunakan alternatif lain seperti penambahan alatalat berat.
- 3) Saran yang dapat diberikan adalah jika ingin melakukan percepatan durasi menjadi 365 hari maka gunakan kombinasi 3 dengan penambahan biaya sebesar Rp. 297.287.278.72.

#### DAFTAR PUSTAKA

- Andika, Putra Restu. (2020). Analisa Perbandingan Percepatan Pelaksanaan Proyek Dengan Penambahan Tenaga Kerja Dan Penambahan Waktu Kerja Dengan Metode Time Cost Trade Off Pada Proyek Pembangunan Balai Karantina Pertanian Jawa Tengah. Prosiding Seminar Nasional Teknik Sipil 2020, ISSN: 2459-9727.
- Ayu, Ida. (2019). Metode Perencanaan dan Pengendalian Proyek Konstruksi. Bali: UNHI Press.
- Badan Pengatur Jalan Tol. (2022, 12 Maret). Tujuan dan Manfaat Jalan Tol. Diakses pada 14 Maret 2022, dari https://bpjt.pu.go.id/konten/jalan-tol/tujuan-dan-manfaat
- Chasanah, Ummi. dan Sulistyowati. (2017). *Penerapan Manajemen Konstruksi Dalam Pelaksanaan Konstruksi*. Jurnal Neo Teknika Vol.3 No.1, Juni 2017, hal. 35-39.
- Dipoprasetyo, Ibnu. (2016). *Analisis Network Planning Dengan Critical Path Method (CPM) Dalam Usaha Efisiensi Waktu Produksi*. eJournal Administrasi Bisnis, 2016, 4 (4): 1002-1015.
- Ervianto, Wulfram I. (2008). *Teori Aplikasi Manajemen Proyek Konstruksi*. Penerbit Andi, Yogyakarta.
- Maynard, Yohanes. Maranatha, W., dan Tiong Iskandar. (2020). Percepatan Pelaksanaan Proyek Dengan Metode Time Cost Trade Off Pada Proyek Rehabilitasi/Pemeliharaan (SEGMEN :sp. SEDUKU-KAWALELO-LIKUTEDENG-LAMIKA) LAPEN, KEC.DEMON PEGONG, KAB.FLORES TIMUR NTT. Jurnal Gelagar Vol.2 No.2 2020.
- Peraturan Pemerintah NO.35 (2021). Perjanjian Waktu Kerja Tertentu, Alih Daya, Waktu Kerja, Dan Waktu Istirahat, Dan Pemutusan Hubungan Kerja.
- Priyo, Mandiyo. dan Paridi, MRA., (2018). *Studi Optimasi Waktu dan Biaya Dengan Metode Time Cost Trade Off Pada Proyek Konstruksi Pembangunan Gedung Olahraga (GOR)*. Jurnal Semesta Teknika Vol. 21. No. 1, 72-84, Mei 2018 DOI: 10.18196/ st.211213.
- Putri, Okyta Cahya Ardika. Sugiyarto., dan Fajar Sri. (2014). *Analisis Time Cost Trade Off Dengan Penambahan Jam Kerja Pada Proyek Konstruksi (Studi Kasus : Proyek Pembangunan Jalan Tol Bogor Ring Road Seksi II A)*. e-Jurnal MATRIKS TEKNIK SIPIL/September 2014/273.
- Rani, Hafnidar A. (2016). Manajemen Proyek Konstruksi. Budi Utama: Yogyakarta
- Respati, Rida. Agus Sugianto., dan Wisnu Bagus. (2021). *Kajian Percepatan Proyek Dengan Metode Time Cost Trade Off Pada Proyek Pembangunan Jalan Tol Balikpapan-Samarinda Seksi V.* Jurnal TRANSUKMA Vol.03 No.02, Juni 2021.